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PREFACE

This monograph was written to illustrate how one might use
the computer to advantage in an introductory physics course, and
also to indicate, more generally, how the computer can be intim-
ately interwoven into the teaching of physics. Although computers
have been very much with us for a decade, there has been little
attempt to involve them in the education of physicists. However,
one may recognize three possible modes of computer usage in the
physics curriculum: (1) calculator; (2) simulator; (3) tutor.
That is, the computer may be used to perform calculations, or as a
pseudo-analog device to simulate Physical phenomena (for example,
radioactive decay by the use of a random number generator), or for
the actual interactive presentation of material and evaluation of
responses more commonly known as computer-assisted instruction
(CAI). 1In this paper, the authors utilize the computer as a cal-
culator, preferring a time-shared teletype terminal or a small
readily accessible computer which will be immediately available to
students during the laboratory session and provide them with the
experience of direct interaction with the computer. This type of
arrangement enables them to freely change the nature of the forces
or initial conditions and to observe the effects of these changes
at once, without loss of continuity or interest.

The segment of curriculum presented here is intended o com-
prise one week of instruction in the physics of the harmonic oscil-
lator, without calculus, for either physics or non-physics majors.
The philosophy motivating this Presentation is that knowledge of
the unique conceptual advantages and problems of the computer
should be acquired early in the physics curriculum if the computer
is to become a fundamental part of the physicist's problem-solving
repertory. Ultimately, we may see the methods of numerical analy-
sis and the calculus of finite differences fully integrated into
physics curricula in anticipation of their relevance to the utili-
zation of the computer. This is not to supplant the standard math-
ematical analysis which has traditionally accompanied the physics
curriculum, but rather to complement the mathematics by enabling
the student to explore a broader range of more meaningful problems.
Thus, both student and teacher are no longer restricted to the
classical setpiece problems of physics by the students' lack of
mathematical sophistication, but are free to go as far and as fast
as physical understanding can carry them.

The course is organized into three lectures, Days One to Three,
and a Laboratory Session. A Student Manual and a Teacher's Guide
are available; both are bound together in this monograph. Day One
develops the basic first-order numerical integration scheme for
computing velocity and position from a knowledge of acceleration
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and initial conditions. Day Two goes on to discuss the nature of
computers and their languages, and the construction of algorithms
for computation. The case in point is harmonic oscillation under
the Hooke's Law linear restoring force; the problem is appropri-
ately scaled and a flow chart constructed for the basic computa-
tional loop. Day Three is available in four different versions,
one for each of the well-known computer languages: BASIC, FORTRAN,
JOSS, and PL/l. The versions are interchangeable, and all four
are included in this monOgraph. In Day Three the structure of

the programs is explained in detail and computations performed.

The emphasis is not on the language per se, but on the analysis;
the language is discussed only insofar as needed for the analysis.
The work is extended to cover the damped harmonic oscillator prob-
lem, a subject customarily not treated before the second year of
physics cum calculus.

Very little material exists for utilizing the computer in the
physics classroom, and even that material is not widely known.*
It is hoped that this paper will provide some stimulus both to in-
novation and to discussion of the role of the computer in physics
education. The authors, having bravely ventured into these un-
charted waters, will warmly welcome any comments and suggestions
from their readers. Of particular relevance would be remarks from
educators who use this material in classroom situations. Communi-
cations or inquiries concerning extra copies of the Student Manual
should be addressed to the Editor at the Commission on College
Physics, University of Maryland, 4321 Hartwick Road, College Park,

Maryland 20740.

In closing, the Editor would like to acknowledge the capable
and devoted assistance of Miss Kathryn E. Mervine and Mrs. Faye
von Limbach of the Commission staff in the preparation of this

manuscript.

Ronald Blum

Commission on College Physics
University of Maryland

4321 Hartwick Road

College Park, Maryland 20740

*See American Journal of Physics 35, 273 (1967).
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STUDENT MANUAL

INTRODUCTORY COMPUTER-BASED MECHANICS

A One Week Sample Course




INTRODUCTION

The area of physics treated here is mechanics, the study
of the motions of bodies; the ideas and concepts used here are
related to those from your previous work in your physics course.
What is new is the use of the computer as an integral part of
your studies. That is, we shall attempt to indicate how the
particular capabilities of the computer earn for it a place in
the conceptual framework of the physics curriculum beyond its
mere usefulness as a calculating device.

The following material is intended to introduce you to the
use of computers within physics, to acquaint you with some im-~
portant mathematical concepts, and to apply these to the solu-
tion of a fundamental physical problem, the harmonic oscillator.
We shall discuss the relationships between the displacement, or
position, of a body, its velocity and its acceleration; and we
will see how the computer can be used to perform the requisite
calculations so that, at this stage of your development, you
can understand the physical principles ané~apply them without a
prior knowledge of calculus. We then show how these principles
can be used to construct and solve the equations of motion of a
harmonic oscillator with the aid of the computer. Although we
shall treat the case of a mass on a spring, the idea of harmon-
ic oscillatory phenomena is of great and fundamental importance
throughout the whole of physical science.




DAY ONE

The physical situation you are invited to consider is that
of a point particle P moving along a straight line, as shown
below:

X<0 X>0

49 ? —= X
X

An origin has been selected on the line, and distances are
measured from this origin, positive in one direction and nega-=
tive in the other. First, let us look at a case with which you
are already familiar, motion at constant velocity. We want to
find where the particle is going to be, knowing its position at
an earlier time, and the constant value of the velocity.

We know that the particle has moved a distance equal to
the product of its speed and the elapsed time. The new posi-
tion is simply obtained by adding this distance to the earlier
position. Expressing this symbolically, in a notation that
will probably not be too different from that used in your text,
we can write

Xnew = Xold + V°D (la)

where Xnpew and Xoq are the new and old positions along the
line, V is the constant velocity, and D is the time that has
elapsed as the particle moves from Xgyq to Xpew o In other
words, D = Tpew = Toa » If you have been using different nota-
tion, you should "translate" this expression into the more
familiar notation, so that you are convinced it is nothing new.
The information contained in this equation is nothing more than
the common sense information you already know from your every-
day experience with automobiles; that is, if the automobile at
X is traveling at a constant velocity of 30 miles per hour,
it travels 90 miles further in three hours.

Suppose we consider one numerical example, to see how to
use this relation. If the particle is initially at 3.4 cm,,
and the velocity was 7.2 cm./second, to find its position two
seconds later we would proceed as follows:
= xold 4+ VD
= 3.4+ (7.2)°(2)
= 3.4 + 14.4

= 1708

xnew

This is rather trivial calculation, and should not cause any
difficulty.




However, one can, as we will see, use simple relations like

this to tell us much more about the motion of bodies than you
might suspect. Consider the following table of velocities at
different times.

TIME VELOCITY
(sec.) (em./sec.)
.0 6.34
.1 6.45
2 6.74
.3 6.81
.4 6.77
5 6.41
.6 6.10
.7 5.70
.8 5.54
.9 5.60

The velocity is not constant here, as it was in the previous
example. For the moment we will ignore that difficulty; later
we will show how to treat the general case of non-constant
velocity.

The problem we are to solve is this:

Given the velocities of the particle at partic-
ular times, we want to find its position at the
same times, using the relationship that we have
developed above and adding any new information
needed. ‘

Suppose we want to calculate the position at .l sec, knowing
the velocity at time 0. Here we are immediately confronted
with a problem: we need more information. Our equation allows
us to compute a new position when we already know an older po-
sition. We must have some initial information about where the
particle is at the beginning of our calculation. We shall find
that the need for such initial values is an important and char-
acteristic feature in all calculations of the type we are con-
sidering here, even in areas quite different from mechanics.

Let's then choose an initial value for the position of the
particle at the time 0; suppose X = 4.3 cm. at T = 0.

Now the calculation can proceed on a line-by-line basis,
using the information we have on hand and the relation for com-
puting the new position. The new position just calculated
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ﬂ becomes the o0ld position in the next calculation. Thus, to
: find the position at the time .l sec., we make the following
calculations:

Xpew = 4.30 + (6.34) (.1) = 4.93 cm.

To find the position at .2 sec., we use this newly calculated
position as the "old" position and proceed as follows:

E Xoew = 4.93 + (6.46) (.1) = 5.58 cm.
g . Here is the result of carying out some of these computa-
:ﬁ chons. TIME VELOCITY POSITION
(sec.) (cm./sec.) (cm.)
0 6.34 4.30

.10 6.46 4.93
;' .20 6.74 5.58
' .30 6.81 6.25 |
: .40 6.77 €.93 ;
.50 6.41 7.61 |
; .60 6.10

.70 5.70
! . 80 5.54
1 .90 5.60
’ 1.00 -

Exercise 1l: Check to see that these values are correct
and complete the table.

You should make certain that you understand how we are mak-
ing these computations before you proceed further, as they are
the basis for what we will be doing later.

Acceleration f

Exactly the same type of relation can be used for obtaining
] new velocities, knowing accelerations and previous velocities.
‘ The relation here is as follows:

Vhew = Voig + A-D (1b)

The new quantity, A, is acceleration, while the subscripts as
before indicate the new and old values of the velocity, at the
beginning of the time interval, and then a time D 1later. Just
: as before, this relation is not strictly true unless the accel-
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eration has been constant over the time interval, and so we are
still faced with the same problem we had before. We will re-
turn to this problem later. Again, you should relate this to
expressions used in your own text, and read the discussions
there.

We could use Equation (1lb) exactly as we have used Equation
(la); that is, if you were given a table of values of accelera-
tion against time, you could, with just this relation, compute
the velocities at each of the:.times, assuming we ignore the fact
that acceleration is actually changing rather than constant.

However, this is not our main interest. Rather, what we
would like to do, and what we have been working toward, is to
use both of these relations together.

Suppose we start with the fcllowing values of the accelera-
tion at different times, as given in the table:

TIME ACCELERATION
(sec.) (cm./sec.?)
0 1.3
.10 1.1
.20 .9
.30 .8
.40 .9
.50 1.0
.60 1.3
.70 1.5
.80 1.6
.90 1.4
1.00 1.2

We can use Equation (lb) to compute the velocity at T = .l sec.;
then by the use of Equation (la) we can compute the position at
T = .1 sec. Note that in this case we keep using the two equa-
tions alternately. We use first the velocity equation (1b) to
give us the new velocity, and then we use this value in the
position equation (la) to find the new position. We could com-
bine the two equations into a single one to calculate the new
position; however, for reasons of simplicity we will avoid it.

Exercise 2: Make the calculations, finding what the
positions will be from knowledge of the
acceleration at a number of times. As-

t
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(continued) sume that the initial position is 3.80 cm.
and the initial velocity =-1.30 cm./sec.

The information you are calculating is already nontrivial,
in spite of the fact that the two relations are both very sim-
pie. '

We could stop here, because we have all that is necessary
for proceeding to the next stage of work. However, some addi-
tional insight can be gained, not only for our calculations
here but for your future work in physics and mathematics, by
some further mathematical considerations of the two basic equa-
tions we have used. Suppose ynu take the position equation,
Xpew = Xola + V+D. We can rewrite this in the following form:

V = Xnew; Xold (.].c)

You probably have used a similar relation for defining the
average velocity during a time interval, so this expression
should not be too unfamiliar. You will also, in all likeli-
hood, have considered the case of the time interval D becoming
smaller and smaller. Under these conditions the difference
between the two positioris also becomes smaller, but in most
physical situations the ratio, V, tends to stay almost the
same. This, you may recognize, is an intuitive physical ap- ;
proach tc the concept of limit; one can allow D to get
arbitrarily smaller and speak of the value of the ratio in the :
limit of D approaching zero. ’

No attempt will be made to give a full discussion of the g
concept of limit here, but if you have a calculus text avail- :
able you can pursue these details further. The idea that the
ratio of two quantities, each separately becoming smaller and
smaller, can in the limit approach a finite value leads to a
concept you may have met: the derivative. Velocity is often
defined, in courses using calculus, in the following way:

V = dX/dT, where dX/dT can be read as "the derivative of X
with respect to T." What this means is that we have taken
Equation (lc) and gone to the limit, using smaller and smaller
D's. The mathematical details are not all here, and many math-
ematicians would approach the problem somewhat differently.

Exactly the same comments can be made about the accelera-
tion, for which our second algebraic result can be written as
a limit in the following ways A = dv/dT.
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DAY TWO

We have been using two simple relations, one for computing
the new position, Xpew = Xqg + V*D, and one for computing the new
velocity, Vyew = Voigt+ A*D, for a particle moving along a straight
line. We have seen also how these two equations can be used to-
gether so that starting from information about the acceleration
we can find information about where the particle will be at dif-
ferent times. We have also seen that to make such a calculation
it is necessary to have information about initial position and
velocity.

However, during our previous work we mentioned, but ignored,
a problem which we now need to treat. Equation (la) holds exact-
ly only if the velocity is constant during the time-interval.
If, for example, the velocity is increasing during the interval
we would expect the new position calculated to be too small,
because we are using the velocity at the beginning of the time
interval. Exactly the same problem arises in the velocity calcu-
lation, Equation (1b), if the acceleration is changing. ‘

Clearly, if the velocitz,is changing, the calculation for
position will not be accurate. The critical question is, just
how much error is introduced. The physicist 1§~a1ready well ac-
quainted with error, because it is always present in any experi-
mental situation. Hence he knows that his data, while they may
look precise, are not. Numerical calculations are another pos-
sible source of error. Numerical errors generally arise from
two sources: roundoff errors due to rounding numbers off to
significant figures; and truncation errors due to using approx-

,Lmate formulas for certain mathematical functions. The former

““pe will mainly concern us here, although the latter becomes .
more important as one deals with more complicated physical prob-
lems where such approximations are essential to obtain workable
solutions.

Whether error is due to the measurement process or to com-
putational simplifications the question is how much can we
tolerate? If we can control the error, make it small enough,
then it becomes tolerable. The criteria for "small enough™ must
ultimately reside in the judgment of the physicist concerning
the nature of the problem, the purposes of his study, and the
facilities available to him.

Consider our particle moving along a straight line. If the
time interval is long, the particle's velocity during that in-
terval may have changed radically. Hence, the calculated posi-
tion at the end of that interval may bear little resemblance to
its actual position. On the other hand, if the time interval is
quite small, the situation is different. You know that most
physical objects do not make extremely rapid changes in their
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velocity; velocity tends to change smoothly over appreciable
time intervals. Hence, for small changes the error in calcula-
tion of the new position will be small even if you are using
the velocity at the beginning of the time interval, because the
velocity has not changed too greatly in this interval. This
still does not tell us whether the error will be tolerable for
our purposes, but at least suggests that with a small enough
time interval the calculations may be acceptable. We will re-
turn to this issue later, when computer facilities are avail-
able and we can do some experimental work to determine how
small is "small enough".

Exercise 3: In the first exercise you calculated each
successive position by using the velocity
at the beginning of each time interval.
What would happen if you used the velocity
at the end instead? Make a quick guess at
how much difference you would expect in
the positions, and then carry out the com-
putations. Can you think of a better
choice for the velocity than either of the
above?

So far all of our calculations have been hand calculations.
If you calculated the positions from the accelerations, as sug-
gested, you will already have discovered that such calculations
are not only tedious but also repetitive. Once the basic pro-
cedure of the calculation is established, it only remains to
grind out the answers routinely. This work can be done by any-
one who can follow the calculational procedures. Calculations
of this kind can be performed by machines that have the same
capability, digital computers. Most of the discussion that fol-
lows is concerned with using computers for problems which -are
amenable to such calculations. We use the word "amenable" quite
deliberately; most problems can be approached in a variety of
ways. The computer is on&€ such way; sometimes the only way,
sometimes simply more practical than other methods. However, in
any case the computer must be considered as an essential part of
the physicist's repertory of conceptual tools for solving prob-
lems, since its use requires special analytical schemes which
take advantage of its unique ability to perform many routine
procedures repetitively at high speed. The typical situation in
which the computer is useful to the scientist is one where there
is a large amount of calculaticn (or other symbolic manipulation)
required. In our problem, so far, we have used only crude ap-
proximations; we still have not seen the complete situations,
where even more calculation is necessary and the use of a compu-
ter not only reasonable, but, as calculations get longer and
longer, essential.

How can we rewrite our expressions for position and veloci-
ty so that they can be used directly in a computer calculation?

o
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Modern computer languages are problem-oriented, and allow a
usage similar to that found in ordinary algebra. We will not be
able to exhaust the enormous variety of computer languages in
this brief treatment. In this section we will write expressions
suitable, with very slight modifications, for a wide class of
languages. In the next chapter we will consider detailed pro-
grams, using material from this chapter, for one of the four
computer languages: FORTRAN, JOSS, BASIC, and PL/1l.

Here is how we will translate our two algebraic statements:
xnew = Xol

Vgg + A°D becomes V =V + A*D (2b)

g ¥ VD becomes X =X + V*D (2a)

Vnew
As algebraic statements, (2a) and (2b) appear incorrect; however,
the (=) statement in a computer language does not mean exact
equality. Instead, it says compute the number on the right and,
after it is computed, store it in that memory cell of the compu-
ter which has been given the name of the variable which appears
on the left. Thus, expression (2a) says: retrieve the number
stored in memory cell V, multiply it by the number stored in
memory cell D, and add to that the number stored in memory cell
X. The result is then stored in memory cell X, replacing the
old value of X. Professional computer scientists will refer to
(=) not as equality, but as an "assignment" statement, since it
assigns certain values to be stored in certain memory cells.
(To emphasize the distinction, they may even replace (=) by (<)
or (:=).) If we had wished to save the o0ld value of X we
should have had to designate a separate memory cell for the pur-
pose and fill it before we executed Equation (2a). The values
of V and D however, are unchanged, since they only appear on
the right side of Equation (2a). In Equation (2b) V is changed.
It should be clear from this that the left side of an assign-
ment statement can only have one variable. Note that the (*) is
being used as a multiplication sign. This is not universal with
all computer languages--some still use the familiar dot. It is
necessary in some of the computer languages, including some we
will consider, to put some introductory material in front of the
statement. We will consider these details later.

In performing a routine computation many times with the
computer, the procedure for doing so is called a "loop". In ad-
dition to calculating the new position and the new velocity, the
basic calculational loop should also keep track of how far we
have gone by finding the new time, T, at each stage in the cal-
culation. You should be able to see from the previous discussion
that the "new" time can be found from

T=T+D (3)

Returning to physics, we come to the most important relation
in dynamics. The critical factor in determining how particles
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move is Newton's Second Law of motion, the law which relates
force, mass, and acceleration by the relation

F = M-A (4a)

Thus, if we know the force acting on the particle, Newton's law
tells us how to find the acceleration by computing

A = F/M (4b)

You can see why the Second Law is important: if we understand
the nature of the physical forces at work we can determine the
acceleration and, from the procedures discussed above, the velo-
city and position at each time.

Since the mass does not present any great problem we will
defer its discussion for a moment. However, the force can
change in complicated ways during the particle motion. In some
situations the force can be measured directly, but most common
forces in physics fortunately depend on position, on velocity,
and on time, in relatively simple ways. If we know the force as
a function of position, for example, and we know the position at
a certain time, we can calculate the acceleration at that time,
using the Second Law. With this information we can calculate
the position and velocity at a later time. Thus we have the
ability to perform much more powerful calculations than we did
earlier. We can now undertake the fundamental problem of dynam-
ics: to predict the motion of a body.

The details may be clearer if we focus on a specific exam-
ple. Consider a force that you are probably already familiar
with, the force on a mass on the end of a spring. This force is
the familiar Hooke's Law force, proportional to the distance
from the equilibrium position. The force is always directed to-
ward the equilibrium position. Your text has probably already
introduced a simple analytic expression for this force:

F -K+X (5)
K 1is a factor of proportionality (the spring constant) which
measures the stiffness of the spring. The coordinate system has
been chosen so that the force is zero at the origin. The minus
sign reflects the fact that the force is toward the origin.

We can combine Newton's Second Law, the Hooke's Law force,
and the equation for the calculation for the new velocity. If

we put these together we can write the statement for calculating
velocity in our computer language as

V=V - (K/M)*X*D (6a)

where the slash indicates division, as usual. Our three basic
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computer-language statements are now as follows:

X =X + V*D (2a)
V =V - (K/M)*X*D (6a)
T =T+ D (3)

You should notice that the strength of the spring and the
mass of the particle enter the problem only in the combination
K/M. We could solve for the motion starting with many different
values of K and of M, but it is obvious that the motion only
depends on the ratio K/M. In fact, there is a way to change
the variables of the problem so that even this ratio disappears. :
A simple dimensional argument gives us a hint as to how to do ;
this. |

Exercise 4: Express K in terms of the fundamental
units, mass, length and time. Show'that
the ratio K/M has dimensions 1/(time)?2,

It follows from the above result that M/K is measured in units
of time. It is, as we shall see, a "natural" unit of time for
this problem.

What happens if we measure all times in units of YM/K ? 1In
other words, let us replace T by VM/K *T' and D, since it is
just a time interval, by vM/K *D'. (Note that T' and D' are
now dimensionless variables.) Since velocity is measured in'
units of length divided by time, let us replace V by vK/M *v',
With these changes the three steps in our calculation become

X = X 4+ V'*D' oo (7a)
V' = V' - X*D! {7b)
T' = 7' + D! (7¢c)

where we have eliminated common factors from all terms in each
statement.

Exercise 5: Convince yourself that this cancellation -

is legitimate by rewriting Equations (2a)

and (6a) as algebraic equations and making

the substitutes for V and T described e
above.

As a final step in this simplification let us drop all the i
primes in the previous computer statements, We must remember ~
that when we want to compare the motion of different masses, for
example, it is only necessary to multiply the calculated times

by vM/K and the calculated velocities by vVK/M . ﬁ

You should notice that the above changes have not only

- e
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simplified the calculation but also have yielded a deeper under-
standing of the physical situation. Without having solved for
the motion we have seen that changes in M/K only affect the
"time scale" of the motion but not its fundamental character.
Increasing M, for example, will increase the time scale and, in
effect, do nothing more than slow down the motion.

Exercise 6: What will be the effect on the motion if
K 1is increased by a factor of four?

Let us return now to the computational problem of solving
for the motion by using the simplified statements:

X =X + V*D (2a)
V =V - X*D (6b)
T=T4+ D (3)

(If you have difficulty in following the above line of reason-
ing, you may think of what follows as merely the special case in
which M/K = 1.)

We now have on hand the basic mechanism for finding how
bodies move, or at least how one particle, the mass on the end
of a spring, moves. The method will later be generalizable to
other situations in ways that you can probably already envision.
We can illustrate the calculation by a diagram. The computer
language statements are placed to the right of the blocks in
which they are used.

—>1 Calculate next position. X = X + V*D
¥

Calculate next velocity.
‘ ¥

I Calculate next time. T

¥

[ More calculation?

R

YES NO

V = X*D

<
I

!
=

+ D

STOP?.

Just as before, initial values of position and velocity will be
needed to get the calculation started.
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Exercise 7: Assume that at T = 0 sec. the position
is X =1 and the velocity is V = 0.
This is equivalent to displacing the
spring through unit distance, holding it
at rest, then letting it go at the mo-
ment which we start the clock. Use the
calculational loop presented above to
find the positions, velocities, and times
at intervals of .1 sec. in time, tabula-
ting the data so obtained.

You may also want to describe this calculation to someone who
knows no physics, but who knows how to follow directions and
carry out arithemetical operations. Once the basic physics has
been accounted for the problem becomes a computational task,
rather than a physics problem.

You can note from the order in which the computations are
presented that Vyey is calculated using Xpew on the right side
of Equation (6b). It might seem more symmetrical to use Xoud ;
however, the accuracy is about the same in either case, and the
method we have chosen is easier to program.
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DAY THREE

We have outlined a method for finding how a particle moves,
: assuming motion along a straight line. The method requires a de-
1 scription of the force acting on the particle and uses Newton's

Second Law to find the resulting acceleration of the particle

4 (Equation (4b)). Assuming initial values of position and velocity,
1 it is possible to calculate later values of position and velocity.
4 We completed the last section by showing how all of this informa-
; tion could be brought together in a computational procedure to de-
: termine the position of the particle at successive times.

In the present chapter we shall examine a complete computer
4 program for the calculation of successive values of the particle
: position and will explain how it contrives to accomplish this end.
The program is written in BASIC, a commonly available language for
use in systems having remote terminals connected to a computer.

BASIC exists in forms with other names, so you may be using a "dia-
lect" with a slightly different name in your class: XBASIC, SUPER

BASIC, or HPBASIC.

; Here is the BASIC program for the harmonic oscillator problem
(your instructor will show you how to input this information to
the computer) :

110 LET T=0

120 LET X=1

130 LET V=0

140 LET D=.1

: 150 LET X=X+V*D

| 160 LET V=V=-X*D

i 170 LET T=T+D

180 PRINT T;X

190 IF T<3 THEN 150
200 END

This is a complete computer program, with all the instructions the
computer needs to carry out the calculation.

ik e R

You should have no trouble recognizinc¢ the basic features of
the calculation. The first four lines assign initial values to
the time, T, position, X, velocity, V, and time interval, D. New
values of the position, velocity, and time are calculated in the
« next three lines. You can recognize the two steps which calculate
{ the new position and the new velocity, because the relations, ex-
| cept for the statement-numbers at the beginning and the prefix
; "LET", are those that you have already seen. The PRINT statement
] is a rather obvious instruction to print the time T and position
X on the terminal typewriter.
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Statement 190 is a "branching" statement which alters the
flow of the calculation. Normally, in most computer languages,
the program statements are done in the sequential order in which
they appear. In a BASIC program this order is the same as the
numerical order of the numbers which precede the statements.
However, if time T is less than 3, statement 190 transfers to
150, which is the next calculation of the new position. After
T gets sufficiently large the branch is not made, and the pro-
gram proceeds to the next statement after the IF-THEN statement.
i Since the next statement in the program is an END statement, the
; calculation is terminated when T > 3. (Statement numbers in
f BASIC must lie hetween 0 and 99999. The highest statement number
1 used in a givenrn prcgram must be an END statement.)

The flow of computations can be represented in the following
schematic flow chart:

Establish initial i%g igg i:g

values for T, X, 130 LET V=0

V, and D. 140 LET D=.1
~; ¥ =
; Calculate next X. 150 LET X=X+V*D E
l .
Calculate next V. 160 LET V=V-X*D §
'k l 1§
, Calculate next T. 170 LET T=T+D ;
y) ]
Print results. 180 PRINT T;X y

No Finished? 190 IF T<3 THEN 150

Yes

Stop 200 END
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You can recognize the previous flow chart (page 13) of the basic
computational loop as part of this chart.

When executed by computer, this program produces the follow-
ing output:

1
.99
.9701
.940499
.901493
.853472
.796916
.732392
.660543
.582089
.497814
.408561
.315222
.218731
»120052
2,01736
-7.99069
-.179188
-.276678
-.371401
-.46241
-.548794
~.629691
-.704291
-.771848
-.831687
-.883208
-.925898
-.959328
-.983166
-.997171

e e © o o o o o o
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It may puzzle you to see output for T = 3.1, since our IF test
was to terminate for T > 3. The number 3.l appears because in-
ternal computations are usually performed in binary, or base-two,
arithmetic, and the conversion from birary to decimal (base-ten)
numbers is often not quite exact. Thus, the value of T actual-
ly stored may have been something like 2.99999 instead of 3.0
when the IF test was performed.

This is still a crude program, although it is sufficient for
the basic calculation. It types every value of time and position
after it is calculated. In the present case this will only pro-
duce about thirty sets of values, so there is no great difficulty.
We have already Seen that our basic approximation only works when
the time step D is small enough, but we do not know how small it
would be. Therefore, we may want to change the time step, to 0l

Ea o 2
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or even to .00l, to explore the effect of smaller choices of D.
However, our program becomes impractical if we change the time
step to .001, because it would yield one hundred times as many
lines of output as the present version.

One way to solve this problem is to generate printout only
at specified "print-times", P, which may occur at intervals great-
er than D. We can do this by introducing an IF statement which
bypasses PRINT T;X whenever T < P. Furthermore, after each
printing P is immediately increased by some multiple of D so
that the statement is executed again only after a decent interval
has elapsed.

For example, we may wish to use a time step only 1/10th as
large as the previous one, but print out results only after every
tenth computation, so the output will be similar to our previous
program. We can provide for this by initializing D and P:

140 LET D=.01
141 LET P=.1-D

comparing T to P with
171 IF T<=P THEN 150

and if T > P executing the PRINT T;X statement and increasing
P .
181 P=P+.1

immediately after printing.

As before, the output of this program is a column of times
and a parallel column of corresponding positions. But the columns
are not labeled. Furthermore, a program needs to have its own
self-contained documentation; the output should identify the prob-
lem and state what parameters were used in the calculation. This
is not just window dressing, but a useful part of programming.

The print statement can be used both to type a heading and to type
initial values, as follows:

100 PRINT "HARMONIC OSCILLATOR"
101 PRINT

143 PRINT "TIME STEP =";D

144 PRINT "INITIAL X =";X

145 PRINT "INITIAL V =";V

146 PRINT

147 PRINT " T X"

148 PRINT "-===-—————e————- "

When the program is run, line 100 will type a heading before any

output begins. Line 101 will merely produce a line with no print-
ing on it. Lines 143-145 will each print the characters contained
between the quotation marks, followed immediately by the appropri-
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- ate number. (You should note in line 144 that the X between

! guotation marks is typed as an X, but the one outside causes the
numerical value of X to be typed.) Line 146 inserts another
blank line in the output. Line 147 prints column headings for the
rest of the output, and line 148 is inserted merely to improve ap-
pearance of the output.

Note that lines 143-145 must appear later than lines 120, 130,
and 140.- If, instead, they were numbered 103-105, they would not
type out the correct initial values of T, X, and V. The computer,

: remember, executes the statements of a program in sequence, and T,
3 X, and V are not all defined until line 140 is reached.

The modified program now appears as follows:

100 PRINT "HARMONIC OSCILLATOR"
101 PRINT
110 LET T=0 ]
120 LET X=1 '
130 LET V=0
] 140 LET D=.01
: 141 LET P=.1-D
143 PRINT "TIME STEP =";D
144 PRINT "INITIAL X =";X
145 PRINT "INITIAL V =";V
146 PRINT
147 PRINT " T X"
148 PRINT "==—=cmmmmm e "
150 LET X=X+V*D
160 LET Vv=V=-X*D
170 LET T=T+D
171 IF T<=P THEN 150
180 PRINT T;X
181 LET P=P+.l
190 IF T<3 THEN 150
200 END

i and execution by a computer produced the results given on the fol-
lowing page.

Exercise 8: Go through this calculation by hand far
enough to confirm that output will be
f printed only when T = .1, .2, .3, etc.
% (Note that the transfer back to line 150
occurs when T is less than or equal to P.)

A3y [ etrimag oror R MGSREA Saghy o
senaen T USSR

for the harmonic oscillator force, but it is not difficult to see
where the dependence on force enters the calculation. We used the
harmonic oscillator force to replace the acceleration in the ex-
pression for computing the new velocity (line 160 in our program).
By simply changing this one line, we can use the same program to
compute the motion for a different one-dimensional force.

? Wwhat about other force laws? So far we have a program only

We would also like to change the initial conditions, because
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HARMONIC OSCILLATOR

TIME STEP
INITIAL X
INITIAL V

.01

oo
o

i
.
F
§
*
;
o
T
.
1
%
P
3
]

.995503 ;
.98106 .
.956814 ¥
.923007 '
.879979 B
.828157 7
.768061

.700291

.625524

.544506

.458048
.367013 i
272311 ‘4
.174889 -
7.57184
-2.42083 i
-.123893 i
.22234 3
-.318566 .
-.411608 |
.500538 *
-.584466
-.662555
-.734023 f
--.798158 j
~.854317 ]
-.90194 !
-.940551 | 1
-.969765 i

e LOJOULIH WN =

CogoaouldwdEe ool bdWNE
|
NN

!
(3l &5

-.989289
-.998928
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different initial conditions might lead to very different motions.
Again, in a BASIC system, it is easy to retype the lines assigning
initial values to position and velocity (lines 120 and 130). Some-
times, additional statements will also be needed for specifying
other constants, particularly when we want to explore a family of
forces with different constants.

. This is illustrated in the more realistic case of the damped
oscillator. If you generate the harmonic oscillator solution for
large values of time by making the necessary alteration in line
190, you will find that, according to the calculation, the oscilla-
tor always reaches the upper and lower limits, plus 1 and minus 1,
during its cycle. But an actual mass on the end of a spring will
eventually go less and less far, finally coming to rest in the
equilibrium position. This is due to the fricticnal force of the
air against the mass, which has been ignored in the computations

so far. To a good approximation this force is proportional to the
velocity but always has the opposite sign, because frictional
forces always oppose the motion. Thus, the total force for such a
system would be the sum of the Hooke's Law force and the frictional

damping force: F = =K*X - B*V (8)
where B, the damping constant, is a positive quantity.

It is not difficult to modify our program to solve for the mo-
tion of a damped oscillator by changing the velocity calculation.
With an argument similar to that used before (see Exercise 5), we
can eliminate K and M by a change of units; if we replace B
by C to indicate this change the velocity equation becomes
V = V-(X+C*V)*D, and the program for the damped oscillator then
takes the following form:

100 PRINT "DAMPED HARMONIC OSCILLATOR"
101 PRINT

110 LET T=0

120 LET X=1

130 LET V=0

132 LET C=.5

140 LET D=.01

141 LET P=.1-D

142 PRINT "DAMPING COMST. =";C
143 PRINT "TIME STEP =";D
144 PRINT "INITIAL X =";X
145 PRINT "INITIAL V =";V
146 PRINT

147 PRINT " T X"
148 PRINT "==ccccmcccccce=- "
150 LET X=X+V*D

160 LET V=V- (X+C*V) *D

170 LET T=T+D

171 IF T<=P THEN 150

180 PRINT T;X

181 LET P=P+.1

190 IF T<3 THEN 150

200 END
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The new expression for the force has been used to calculate
the velocity in line 160. Furthermore, note these additional lines
in the program: 132 defines the damping constant C = .5, and 142
types its value. Presumably it would be interesting to run this
problem with many choices of damping constant, so that one can get
a physical picture of how damping effects the motion. This may be
done by merely retyping line 132 with a different value of C be-
fore each run.

It should be apparent that the computer can be a powerful tool
for solving problems in mechanics. Generalizations of many kinds
are possible. We have used two force laws; it is not difficult to
envision further extensions in that direction. Furthermore, the
extension of these methods to two- and three-dimensional problems
is straightforward. Because two coordinates are necessary for the
specification of position and velocity, the solution of two-dimen-
sional problems will require two equations, rather than the one
equation used here. Details about such developments can be obtained
in the references at the end of this material.

Thus, we have on hand the rudiments of a tool which will en-
able us to find out how any particle moves, and with the assistance
of this tool, we have gone far toward understanding how dynamical
systems behave. However, we should not let the computer obscure
the importance of the mathematics. The kinds of equations that we
are solving by our basic numerical procedures are ones which are
not simply ordinary algebraic equations. We can see this if we go
back and write the two equations that we already have as defini-
tions of velocity and acceleration, using the derivative notation:
V = dX/dT and A = dV/dT. These were the general equations. If
we replace A by its value for a Hooke's Law force, now keeping
the M and K, these two equations become

%% =V (9a)

These equations contain derivatives, so they are called differen-
tial equations. What we have seen is one way of solving differen-
tial equations, a way particularly suitable for use with computers
as it requires the manipulation of numbers.

If you proceed further in your study of physics, mathematics
or other sciences, you will find that the differential equation,
handled often by methods quite different from those used here, is
one of the most powerful mathematical tools of modern science.
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DAY THREE

We have outlined a method for finding how a particle moves,
assuming motion along a straight 1ine. The method requires a de-
scription of the force acting on the particle and uses Newton's
Second Law to find the resulting acceleration of the particle
(Equation (4b)). Assuming initial values of position and velocity,
it is possible to calculate later values of position and velocity.
We completed the last section by showing how all of this informa-
tion could be brought together in a computational procedure to de-
termine the position of the particle at successive times.

In the present chapter we shall examine a complete computer
program for the calculation of successive values of the particle
position and will explain how it contrives to accomplish this end.
The program is written in FORTRAN, perhaps the most commonly used
computer language.

Here is the FORTRAN program for the harmonic oscillator prob-
lem (your instructor will show you how to input this information
to the computer):

T=0.
X=1.
v=0.
D=.1
10 X=X+V*D
V=V-X*D
T=T+D
WRITE (6,70)T,X
IF(T-3.)10,10,14
14 STOP
70 FORMAT (F10.2,F12.4)
END

This is a complete computer program, with all the instructions the
computer needs to carry out the calculation.

You should have no trouble recognizing the basic features of
the calculation. The first four lines assign initial values toO
the time, T, position, X, velocity, V, and time interval, D. New
values of the position, velocity, and time are calculated in the
next three lines. The WRITE statement results in the printing of
new values of time and position. The numeral 6, following "WRITE",
selects the output device on which to print (in this case, the
"line printer"). The numeral 70, following "WRITE", tells us to

look for a line beginning with the label "70" and to find there

instructions for details of the printing operation.

The line which begins with "IF", appropriately called an IF
statement, is a "branching" instruction which can alter the normal
flow of the calculation. The normal flow is simply the order in
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which the statements are presented. 1In the case of the IF state-
ment, the sequence of operations can be altered depending on the
value of the expression appearing in parentheses after the IF.

If the expression is negative, the next statement to be executed
will be the statement labeled by the first numeral following the
parentheses; if the expression is positive, the third numeral fol-
lowing the parentheses labels the next statement to be executed.
Finally, if the expression is zero, the middle numeral labels the
next statement to be executed. Thus, the calculation of the next
value of the position by the statement which is labeled with the
numeral 10 will be performed as long as T is less than or equal
to 3.; only when T is greater than 3. will the computer realize
that it has done enough computation.

The flow of computations can be represented in the following 3?
schematic flow chart:

Establish initial i:g' ,

values for T, X, T |

V, and D. D=.1 f

:

—>— “
| L i
ICalculate next X. 10 X=X+V*D Q}
Calculate next V. | V=V-X*D o
| . §?
I b

A

[Calculate next T. T=T+D ;B
I Print results. I WRITE(6,70)T,X &{
& No|  Finished? IF (T-3.)10,10,14 g
I
|
Yes :
| A
I Stop 14 STOP o

|
‘W' A
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(The FORMAT statement does not appear here; we must consider it,
not as an executable part of our program, but rather as a separate
piece of information which we give the computer so that it will
know how to print out our results. Hence, it can occur anywhere
in the program, even after the STOP command.) You can recognize
the previous flow chart (page 13) of the basic computational loop
as part of this chart.

When executed by computer, this program produces the follow-
ing output:

0.10 1.0000
0.20 0.9900
0.30 0.9701
0.40 0.9405
0.50 0.9015
0.60 0.8535
0.70 0.7969 :
0.80 0.7324 ;
0.90 0.6605 ’
1.00 0.5821
1.10 0.4978
1.20 0.4086
1.30 0.3152
1.40 0.2187 ;
1.50 0.1201 T
l1.60 0.0202
1.70 -0.0799
1.80 -0.1792
1.90 -0.2767
2,00 -0.3714
2,10 -0.4624
2,20 -0.5488
2.30 -0.6297
2.40 -0.7043
2,50 -0.7718
2.60 -0.8317
2.70 -0.8832
2.80 -0.9259
2.90 -0.9593
3.00 -0.9832
3.10 -0.9972

Note the use of numerals as labels for some statements in the
program. If the normal sequence of performing operations (i.e.,
in the order in which they are written) were never to be altered
there would be no need for statement labels. On the other hand,
programs would become impossibly long if it were not possible to
alter the normal sequence; our present simple program would be
about 30 times as long if we could not branch from the normal se-
quence and use the basic computational sequence over and over again.

This is still a crude program, although it is sufficient for
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the basic calculation. It prints every value of time and position
after it is calculated. 1In the present case this will only pro-
duce about thirty sets of values, so there is no great difficulty.
We have already seen that our basic approximation only works when
the time step D is small enough, but we do not know how small it
should be. Hence we may want to change the time step, to .0l or
even to .001l, to explore the effect of smaller choices of D. How-
ever, our program becomes impractical if we change the time step

to .001, because it would yield one hundred times as many lines of

output as the present version.

One way to solve this problem is to generate printed output
only at specified "print-times", P, which may occur at intervals
greater than D. We can do this by introducing an IF statement
which writes T, X only when T > P. Furthermore, after each wri-
ting, P is immediately increased by some multiple of D so that
the next WRITE statement is executed only after a decent interval

has elapsed.

For example, we may wish to use a time step only 1/10th as
large as the previous one, but print out results only after every
tenth computation, so the output will be similar to our previous
program. We can accomplish this by initializing D and P:

D=.01 :

P=.1-D i

comparing T to P with 1
IF (T-P)10,10,12

}

branching to the WRITE statement, now labeled 12, when T > P ;

12 WRITE(6,70)T,X

and increasing P by

P=P+.1

immediately after writing.

As before, the output of this program is a column of times 1
and a parallel column of corresponding positions. But the columns ;
are not labeled. Furthermore, a program needs to have its own
self-contained documentation; the output should identify the prob-
lem and state what parameters were used in the calculation. This

is not just window dressing, but a useful part of programming. é
Thus, we further modify the program by adding the lines g

WRITE (6, 30) . 1
and 2

30 FORMAT (24H1 HARMONIC OSCILLATOR,//)

pradnndl
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to produce the top line of the heading on the output, and the lines

WRITE(6,40)X,Vv,D,P
and
40 FORMAT (5H0 X=,F4.1,4H v=,F4.1,4H D=,F5.2,4H P=,F5.2,//)

» to command the computer to print some of the initial values. 1In

* statement 30, "24H" is a signal to the computer to treat the next
24 characters, including blank spaces, as a text or "character
string". This text can be printed by a WRITE statement with the
exception that the first character on a line is interpreted as a

] "carriage control" signal to the line printer and is not printed;
4 the 1 in this statement is the signal to start on the top of a new
: page. In statement 40, the zero immediately following "5H" is a

: carriage control signal to skip a line before printing. Note that
1 the "X" in the WRITE statement is an instruction to print the cur-
rent value of X while the "X" in the FORMAT statement is an in-
struction to print the character X. The two slashes result in one
blank line following this printed line. Finally, the column head-

ings are produced by

WRITE (6,60)
and
60 FORMAT (22H T X)

A1l FORMAT statements are placed after the STOP command for the

sake of neatness, but must precede the END statement. On some com—
puters the STOP command may be optional after the last executable ,
statement, but the END statement is always the last statement of j
every FORTRAN program. }

The modified program ncw appears as follows:

WRITE (€, 30) ;
T=0,
X=1.
v=0.
D=.01
P=.1-D
WRITE (6,40)X,V,D
WRITE (6,60)
10 X=X+V*D
V=V-X*D
T=T+D
IF (T-P)10,10,12
12 WRITE(6,70)T,X
P=P+.1
IF (T-3.)10,10,16
16 STOP
30 FORMAT (24H1 HARMONIC OSCILLATOR,//) .
40 FORMAT (5H0 X=,F4.1,4H V=,F4.1,4H D=,F5.2,//)
60 FORMAT (22H T X)
70 FORMAT (F10.2,F12.4)
END
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Execution of this program by a computer produced these re-

sults:

Exercise 8:

What about other force laws?
for the harmonic oscillator force,

HARMONIC OSCILLATOR

X= 1.0 Vv= 0, D= 0.01

T X
0.10 0.9955
0.20 0.9811
0.30 0.9568
0.40 0.9230
0.50 0.8800
0.60 0.8282
0.70 0.7681
0.80 0.7003
0.90 0.6255
1.00 0.5445
1.10 0.4580
1.20 0.3670
1,30 0.2723
1.40 0.1749
1.50 0.0757
1.60 -0.0242
1.70 -0.1239
1.80 -0.2223
1.90 -0.3186
2,00 -0.4116
2.10 -0.5005
2.20 -0.5845
2.30 -0.6626
2.40 -0.7340
2.50 -0.7982
2.60 -0.8543
2.70 -0.9019
2.80 -0.9406
2.90 -0.9698
3.00 -0.9893

Go through the calculation by hand far
enough to convince yourself that output

.3, etc.

to P.)

will only be printed when T = .1,

«2,

(Note that the branch back to
the beginning of the computational loop
occurs when T

is less than or equal

So far we have a program only
but it is not difficult to see

where the dependence on force enters the calculation. We used the
harmonic oscillator force to replace the acceleration in the ex-

pression for computing the new velocity.

By simply changing this

one line, we can use the same program to compute the motion for a

different one-dimensional force.
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We would also like to change the initial conditions, because
different initial conditions might lead to very different motions.
Sometimes additional statements will be needed for specifying other
constants, particularly when we want to explore a family of forces
with different constants.

This is illustrated in the more realistic case of the damped
oscillator. If you generate the harmonic oscillator solution for
large values of time by testing against a larger time in the second
IF statement, you will find that, according to the calculation, the
oscillator always reaches the upper and lower limits, plus 1 and mi-
nus 1, during its cycle. But an actual mass on the end of a spring
will eventually go less and less far, finally coming to rest in the
equilibrium position. This is due to the frictional force of the
air against the mass, which has been ignored in the computations so
far. To a good approximation, this force is proportional to the
velocity but always has the opposite sign because frictional forces
always oppose the motion. Thus, the total force for such a system
would be the sum of the Hooke's Law force and the frictional damping
force: . :
F = -K*X - B*V ‘ (8)

where B, the damping constant, is a positive quantity.

It is not difficult to modify our program to solve for the mo-
tion of a damped oscillator by changing the velocity calculation.
With an argument similar to that used before (see Exercise 5) we
can eliminate K and M by a change of units; if we replace B
by C to indicate this change, the velocity equation becomes
V=V - (X + C*)*D, and the program for the damped oscilliator then
takes the form shown on the following page.

The expression for the new force has been used to calculate
the velocity. Furthermore, note the additional line in the program
defining the damping constant C = .5 and the heading which prints
this value. Presumably it would be interesting to run this problem
with many choices of damping constant, so that one can get a physi-
cal picture of how damping effects the motion. There are other
ways to do this, but the easiest would be to change the statement
defining the damping constant and to resubmit the program to the
computer.

It should be apparent that the computer can be a powerful tool
for solving problems in mechanics. Generalizations of many kinds
are possible. We have used two force laws; it is not difficult to
envision further extensions in that direction. Furthermore, the
extension of these methods to two- and three-dimensional problems
is straightforward. Because two coordinates are necessary for the
specification of position and velocity, the solution of two-dimen-
sional problems will require two equations, rather than the one
equation used here. Details about such developments can be obtained
in the references at the end of this material.
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12

16
20
30
40
50
60
70

22F

WRITE (6,20)
WRITE(6,30)
T=0.

X=1,

v=0.

D=.01

P=.1-D

C=.5
WRITE(6,40)X,V,C
WRITE (6,50)D,P
WRITE (6,60)
X=X+V*D

V=V~ (X+C*V) *D
T=T4D
IF(T-P)10,10,12
WRITE(6,70)T,X

P=P+.1

IF(T7-3.)10,10,16

STOP

FORMAT (17H1 DAMPED)

FORMAT (24H HARMONIC OSCILLATOR,//)
FORMAT (5H X=,F4.1,4H V=,F4.1,4H C=,F5.3)
FORMAT (8H b=,F5.2,4H P=,F5.2,//)
FORMAT (22H T X) '

FORMAT (F10.2,F12.4)
END




23F

~

Thus, we have on hand the rudiments of a tool which will en-
able us to find out how any particle moves, and with the assistance
of this tool we have gone far toward understanding how dynamical
systems behave. However, we should not let the computer obscure
the importance of the mathematics. The kinds of equations that we
are solving by our basic numerical procedures are ones which are
not simply ordinary algebraic equations. We can see this if we go
pack and write the two equations that we already have as defini-
tions of velocity and acceleration, using the derivative notation:
V = dX/dT and A = dv/dT. These were the general equations. If
we replace A by its value for a Hooke's Law force, now keeping
the M and K, these two equations become

dx

ar =V (9a)
av _ _(K
A (9b)

These equations contain derivatives, so they are called differen-
tial equations. What we have seen is one way of solving differen-
tial equations, a way particularly suitable for use with computers

as it requires the manipulation of many numbers.

If you proceed further in your study of physics, mathematics
or other sciences, you will find that the differential equation,
handled often by methods quite different from those used here, is
one of the most powerful mathematical tools of modern science.

REFERENCES

Bork, Alfred M., Fortran for Physics, Addison-Wesley, Cambridge,
1965.

Feynman, Richard P., Feynman Lectures on Physics, Addison-Wesley
Cambridge, 1963, Chapter 9, Volume I.

Sawyer, Walter W., What is Calculus About?, Random House, New York,

———

1961, Chapters 2 and 3. (Also in Harvard Project Physics
Reader 1.)

Sherwin, Chalmers W., Basic Concepts of Physics, Holt, Rinehart &
Winston, New York, 1961.




DAY THREE

, We have outlined a method for finding how a particle moves,
assuming motion along a straight line. The method requires a de-
scription of the force acting on the particle and uses Newton's
Second Law to find the resulting acceleration of the particle
(Equation (4b)). Assuming initial values of position and velocity,
it is possible to calculate later values of position and velocity.
We completed the last section by showing how all of this informa-
tion could be brought together in a computational procedure to de-
termine the position of the particle at successive times.

In the present chapter, we shall examine a complete computer
program for the calculation of successive values of the particle
position and will explain how it contrives to accomplish this end.
The program is written in JOSS, a commonly available language for
use in systems having terminals to a computer. JOSS exists under
other names--AID, ISIS, CAL, PIL, BRUIN, FOCAL, TELCOMP--and you
may be using a dialect of JOSS in your class.

Here is the JOSS program for the harmonic oscillator problem
(your instructor will show you how to input this information to
the computer):

1.1 T =0

1.2 X =1

1.3 V=20

1.4 D= .1

1.5 X = X + V*D

1.6 V = V - X*D

1.7 T =T+ D

1.8 TYPE T, X

1.9 IF T<3, TO STEP 1.5

This is a complete computer program, with all the instructions the
computer needs to carry out the calculation.

You should have no trouble recognizing the basic features of
the calculation. The first four lines assign initial values to
the time, T, position, X, velocity, V, and time interval, D. New
values of the position, velocity, and time are calculated in the
next three lines. You can recognize the two steps which calculate
the new position and the new velocity, because the relations, ex-
cept for the step numbers at the beginning, are those that you
have already seen. The TYPE statement is a rather obvious instruc-
tion to type the time T and position X on the terminal typewri-
* ter.

f Normally, in most computer languages, the program statements
‘ are done in the sequential order in which they appear. In a JOSS

‘ program, this order is the same as the numerical order of the step
numbers which precede the statements. Note that each step number ;

15J
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contains a decimal point. This whole part of the program is called
part 1, because of the 1 occuring to the left of the decimal point
in each statement. (More complex programs can have several parts.)
The numbers after the decimal point designate the individual steps
in part 1. Statement 1.9 is a branching statement which alters the
flow of the calculation. Step 1.9 returns to 1.5, the next calcu-
lation of the new position, if time T is less than 3. However,
after T gets sufficiently large, the branch is not made. Since
there is no statement after this in the program, the calculation is
terminated when T > 3.

The flow of computations can be represented in the following
schematic flow chart:

Establish initial ... T=0
1.2 X =1
values for T, X, 1.3 V=0
V, and D . ~
! * 1.4 D =.1
—
Y
Calculate next X. 1.5 X=X+ V*D
Calculate next V. l.6 V=V - X*D
A Calculate next T. 1.7 T=T+D
Print results. 1.8 TYPE T, X
No Finished? 1.9 IF T<3, TO STEP 1.5
Yes
Stop No more statements
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You can recognize the previous flow chart (page 13) of the ba-
sic computational loop as part of this chart.

The following output is a sample of what this program produces
when it is executed by the computer.

X = -0.6296916
T = 2.4

X = =0.7042915
T = 2.5

X = -0,7718485
T = 2.6

X = -0.831687

T = 2.7

X = -0.8832086
T= 2.8

X = =-0.9258982
T = 2.9

X = -0,9593288
T = 3.0

X = -0.9831661

This is still a crude program, although it is sufficient for
the basic calculation. It prints every value of time and position
after it is calculated. 1In the present case this will only produce
about thirty sets of values, so there is no great difficulty. We
have already seen that our basic approximation only works when the
time step D is small enough, but we do not know how small it
should be. Therefore, we may want to change the time step, to .0l
or even to .001, to explore the effect of smaller choices of D.
However, our program becomes impractical if we change the time step
to .001, because it would give us a hundred times as many lines of
output as the present version.

One way to solve this problem is to generate printout only at
specified "print-times", P, which may occur at intervals greater
than D. We can do this by introducing an IF statement which by-
passes the TYPE T, X command whenever T < P. Furthermore, after
each printing, P is immediately increased by some multiple of D,
so that the next TYPE statement is executed only after a decent
interval has elapsed.

For example, we may wish to use a time step only 1/10th as
large as the previous one, but print out results only after every
tenth computation, so the output will be similar to our previous
program. We can provide for this by initializing D and P:

1.4 ., D
1.41 )

.01
.1 -D

comparing T to P with

. w—id T E
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1.71 IF T<P, TO STEP 1.5
and, if T > P, executing the TYPE T, X statement and increasing P
1.81 P=P + .1

immediately after printing. Note that the step numbers for the new
statements are intermediate between those already in the program;

you only need type them at the terminal as the computer will insert
them in the proper sequence before the modified program is executed.

This program still produces two columns of equations for out-
put. Usually it is more convenient to obtain large amounts of out-
put in tabular form. Furthermore, a program needs to have its own
self-contained documentation; the output should identify the prob-
lem and state what parameters were used in the calculation. This
is not just window dressing, but a useful part of programming. The
TYPE statement can be used both to type headings and to type initial
values, as follows:

1.02 TYPE "HARMONIC OSCILLATOR"
1.42 TYPE D, X, V, ""

1.44 TYPE "TIME POSITION"
1.45 TYPE "e——mmmmemmme e "

The TYPE statements containing quotes (") produce the headings; the
extra pair of quotes in step 1.42 provides a blank line. Note that
step 1.42 must follow the steps assigning values to these variables;
one cannot print variables until they are defined. For tabular out-
put, we need to add a FORM statement and a reference to this form
in the TYPE statement:

1.8 TYPE IN FORM 1, T, X
FORM 1.

The form is a pictorial way of describing the output. It specifies
both the location of X and T on the page and the number of deci-
mal places which will be in each.

The modified program is given on the following page. Execution
of this program, by a computer, will produce the results given on
page 20J.

Exercise 8: Go through the calculation by hand far
enough to convince yourself that output
will only be printed when T = .1, .2,
.3, etc. (Note that the branch back to
the beginning of the computational loop
occurs when T is less than or equal
to P.)
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TYPE "HARMONIC OSCILLATOR"
=0
1

0

.01

.1 -D

TYPE D, X, V, ""

TYPE "TIME POSITION"

o< XA
i

(1R N S )

T + D

IF T<P, TO STEP 1.5
TYPE IN FORM 1, T, X
P="P + .1

IF T<3, TO STEP 1.5

=
=
||
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HARMONIC OSCILLATOR

D= 0.01
X= 1.0 {
V= 0.0 il
TIME POSITION ,
0 10 0.9955 ‘
0.20 0.9810 :
0.30 0.9568
0.40 0.9230
0.50 0.8799
0.60 0.8281
0.70 0.7680 ]
0.80 0.7002 g
0.90 0.6255 %
1.00 0.5445 |
1.10 0.4580 :
1.20 0.3670 R
1.30 0.2723
1.40 0.1748
1.50 0.0757
1.60 -0.0242 ,
1.70 ~0.1238 E
1.80 -0.2223 -
1.90 -0.3185 ;
2.00 -0.4116 |
2.10 -0.5005 (N
2.20 -0.5844 ;
2.30 -0.6625 11
2.40 -0.7340 1
2.50 -0.7981 )
2.60 -0.8543 {
2.70 -0.9019 14
2.80 -0.9405 e
- 2.90 -0.9697 2
3.00 -0.9892 |
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What about other force laws? So far we have a program only
for the harmonic oscillator force, but it is not difficult to see
where the dependence on force enters the calculation. We used the
harmonic oscillator force to replace the acceleration in the ex-
pression for computing the new velocity (line 1.60 in our program).
By simply changing this one line, we can use the same program to
compute the motion for a different one-dimensional force.

We would also like to change the initial conditions, because
different initial conditions might lead to very different motions.
Sometimes additional statements will be needed for specifying other
constants, particularly when we want to explore a family of forces
with different constants.

This is illustrated in the more realistic case of the damped
oscillator. If you generate the harmonic oscillator solution for
f large values of time by testing against a larger time in the second
f IF statement, you will find that, according to the calculation, the
oscillator always reaches the upper and lower limits, plus 1 and mi-
§ nus 1, during its cycle. But an actual mass on the end of a spring
g will eventually go less and less far, finally coming to rest in the
equilibrium position. This is due to the frictional force of the
air against the mass, which has been ignored in the computations so
far. To a good approximation, this force is proportional to the
velocity, but always has the opposite sign because frictional forces
always oppose the motion. Thus, the total force for such a system
would be the sum of the Hooke's Law force and the frictional damping
force:

F = =K*X - B*V (8)

where B, the damping constant, is a positive quantity.

It is not difficult to modify our program to solve for the mo-
tion of a damped oscillator by changing the velocity calculation.
With an argument similar to that used before (Exercise 5) we can
eliminate K and M by a change of units; if we replace B by C
to indicate this change, the velocity equation becomes V=V- (X+C*V) *D,
and the program for the damped oscillator then takes the form shown :
on the next page. ‘

The expression for the new force has been used to calculate
the velocity. Furthermore, note the additional line in the program
defining the damping constant C = ,5. Presumably it would be in- :
teresting to run this problem with many choices of damping constant, 1
so that one can get a physical picture of how damping effects the
motion. This may be done by inserting a different value of C for

each run.

PRSI

ST T

It should be apparent that the computer can be a powerful tool
for solving problems in mechanics. Generalizations of many kinds
are possible. We have used two force laws; it is not difficult to
envision further extensions in that direction. Furthermore, the
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TYPE "DAMPED OSCILLATOR"

T =0
X=1
V=20

C = .5

D= .01
P=.1-D

TYPE D, C, X, v, ""
TYPE "TIME POSITION"

V=V- (X+ C*xV)*D
T=T+D

IF T<P, TO STEP 1.5
TYPE IN FORM 1, T, X
P="P + .1

IT T<3, TO STEP 1.5

|
!
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extension of these methods to two- and three-dimensional problems

is straightforward. Because two coordinates are necessary for the
specification of position and velocity, the solution of two-dimen-

sional problems will require two equations, rather than the one

equation used here. Details about such developments can be obtained

i from the references at the end of this material.

Thus, we have on hand the rudiments of a tool which will en-

able us to find out how any particle moves, and with the assistance

; of this tool we have gone far toward understanding how dynamical
: systems behave. However, we should not let the computer obscure

the importance of the mathematics. The kinds of equations that we

are solving by our basic numerical procedures are ones which are

not simply ordinary algebraic equations. We can see this if we go

back and write the two equations that we already have as defini-
tions of velocity and acceleration, using the derivative notation:
V = dX/dT and A = dV/dT. These were the general equations. If
we replace A by its value for a Hooke's Law force, now keeping
the M and K, these two equations become

; %% =V (9a)
av
% _d_'i'- = _(g)x

These equations contain derivatives, so they are called differen-

(9b)

tial equations. What we have seen is one way of solving differen-
tial equations, a way particularly suitable for use with computers

; as it requires the manipulation of many numbers.

If you proceed further in your study of physics, mathematics
or other sciences, you will find that the differential equation,
handled often by methods quite different from those used here, is
one of the most powerful mathematical tools of modern science.
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DAY THREE

e T

t We have outlined a method for finding how a particle moves,
assuming motion along a straight line. The method requires a de-
scription of the force acting on the particle and uses Newton's
Second Law to find the resulting acceleration of the particle
(Equation (4b)). Assuming initial values of position and velocity,
it is possible to calculate later values of position and velocity.

% We completed the last section by showing how all of this informa-
tion could be brought together in a computational procedure to de-
termine the position of the particle at successive times.

In the present chapter, we shall examine a complete computer
program for the calculation of successive values of the particle
position and will explain how it contrives to accomplish this end.
The program is written in PL/1, a commonly used computer language
available in several forms.

| Here is the PL/1 program for the harmonic oscillator problem
t (your instructor will show you how to input this information to
the computer) :

OSCILLATOR: PROCEDURE OPTIONS (MAIN) ;
: T =0; X=1; V=0; D= .1;
CAILCULATE: X = X + V*D; V=V - X*D; T =T + D;
: : PUT SKIP DATA (T, X);
IF T<3 THEN GO TO CALCULATE;
END OSCILLATOR;

% This is a complete computer program, with all the instructions the
: computer needs to carry out the calculation.

i You should have no trouble recognizing the basic features of
the calculation. The first line identifies the program as a "pro-
cedure", named OSCILLATOR, the name which identifies the program
when stored in the computer. The next line assigns initial values
to the time, T, position, X, velocity, V, and time interval, D.
New values of the position, velocity, and time are calculated on
the line labeled CALCULATE. The PUT statement instructs the com-
puter to "skip" to a new line and print the time T and position
X. :

The line which begins with "IF", appropriately called an IF
statement, is a "branching" instruction which can alter the normal
flow of the calculation. The normal flow is simply the order in
which the statements are presented. In the case of the IF state-
ment, the sequence of operations can be altered depending on the
truth or falsity of the expression appearing after the IF. If the
expression if true, the next statement to be executed will be the
statement designated by the identifier CALCULATE; if the expression

15p
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is false, the computer executes the next statement which, in this
case, ends the program. Thus, successive computations of the loop
beginning with CALCULATE will be performed as long as T < 3; when
T becomes larger than 3; the program is terminated. Note that
all PL/1 statements end with semicolons, and that labels are fol-
lowed by colons.

The flow of computations can be represented in the following
schematic flow chart:

Establish initial
values for T, X,
Vv, and D.

-

Calculate next X, - CALCULATE :
v, T. X = X + V*D;

Print Results, PUT SKIP DATA (T,

!

Finished? IF T<3 THEN GO TO CALCULATE;

Yes

Stop END OSCILLATOR;

You can recognize the previous flow chart (page 13) of the basic
computational loop as part of this chart.

When executed by computer, this program produces the output
given on the following page.

Note that the results are presented as small equations. This
is due to the use of the word "DATA" in the PUT statement; later,
we will see another type of output. The "E" in the numbers is a
common computer way of saying "10 to the power"; thus, 2.3E+04
would mean 2.3 x 10% = 23,000.




9.29999E-02
1.99999E-01
2.99999E-01
3.99999E-01
4.99999E-01
5.99999E-01
6.99999E-01
7.99999E-01
8.99999E-01
9.99999E-01
1.09999E+00
1.19999E+00
1.29999E+00
1.39999E+00
1.49999E+00
1.59999E+00
1.69999E+00
1.79999E+00
1.899299E+00
1.99999E+00
2.09999E+00
2.19999E+00
2.29999E+00
2.39999E+00
2.499992E+00
2.59999E+00
2.69999E+00
2.79998E+00
2.82998E+00
2.99998E+00
3.09998E+00

17P

= 1.00000E+00;
= 9.,90000E-01;
= 9.70099E-01;
= 9.40499E-01;
= 9.01493E-01;
= 8.53472E-01;
= 7.96916E-01;
= 7.32391E-01;
= 6.60543E-01;
= 5.82089E-01;
= 4,97814E-01;
= 4.08561E-01;
= 3.15222E-01;
= 2.18731E-01;
= 1.20053E-01;
= 2.01745E-01;
X=-7.99059E-01;
X=-1.79187E-01;
X=-2.76676E-01;

' X=-3.71399E-01;

X=-~4.62408E~-01;

=-5.48792E-01;
X=-6.29689E-01;

=-7.04289E-01;
X=-7.71846E-01;
X=-8.31684E-01;
X=-8.83206E-01;

=-9.25896E-01;
X=-9.59326E-01;
X=-9.83164E-01;
X=-9.97169E-01;
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One surprising aspect is that the times are not just .1, .2,
.3, etc., as you might expect from the program. This is due to the
fact that internal computations are usually performed in binary, or
base-two, arithmetic and the conversion from binary to decimal,
base-ten, numbers is often not quite exact. While PL/l does not
automatically round numbers, it is possible, in some PL/l1 implemen-
tations, to avoid problems arising from binary-to-decimal conver-
sion by providing for rounding in the program.

This is still a crude program, although it is sufficient for
the basic calculation. It prints every value of time and position
after it is calculated. 1In the present case, this will only pro-
duce about thirty sets of values, so there is no great difficulty.
We have already seen that our basic approximation only works when
the time step D is small enough, but we do not know how small it
should be. Therefore, we may want to change the time step, to .01
or even .001, to explore the effect of smaller choices of D. How-
ever, our program becomes impractical if we change the time step
to .001, because this would yield one hundred times as many lines
of output as the present version. -

One way to solve this problem is to generate printout only at
specified "print-times", P, which may occur at intervals greater
than D. We can do this by introducing an IF statement which by-~-
passes printing (T, X) except when T > P. Furthermore, after each
printing P is immediately increased by some multiple of D so
that the PUT statement is executed again only after a decent inter-
val has elapsed. :

For example, we may wish to use a time step only 1/10th as
large as the previous one, but print out results only after every
tenth computation, so the output will be similar to our previous
program. We can provide for this by initializing D and P:

T=0; X=1; v=0; D= .01;
P=.1-0D;
comparing T to P with

IF T<=P THEN GO TO CALCULATE;

and, if the expression is false and T > P, executing the PUT
statement and increasing P

P=P + .1;

immediately after printing.

This program still produces two columns of equations for out-
put. Usually, it is more convenient to obtain large amounts of
output in tabular form. Furthermore, a program needs to have its
own self-contained documentation; the output should identify the
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problem and state what parameters were used in the calculation.
This is not just window dressing, but a useful part of programming.
The PUT statement can be used both to type a heading and to type
initial values, as follows:

PUT PAGE LIST (' HARMONIC OSCILLATOR ') ;
PUT SKIP DATA (D, X, V)

PUT SKIP;

PUT SKIP LIST ('TIME POSITION') ;

pUT SKIP LIST ( (20) '-' )

In PL/1l, "SKIP" indicates that a new l1ine is to be started and
"pAGE" denotes the beginning of a new page. Note that to write 20
dashes we need only use a repetition factor. For tabular output,
however, we need to alter the PUT statement:

PUT EDIT (T, X) (SKIP, F(5,2), X(5), F(10,6) ):

This command instructs the computer to skip to a new line, allow
five spaces for the value of T, and then to print the value of T
with two places to the right of the decimal. The X(5) specifica-
tion requests that the computer leave five blanks and then print

X to six decimal places in a ten-space field.

Adding these statements gives the final form of the harmonic
oscillator program which appears as follows:

OSCILLATOR: PROCEDURE OPTIONS (MAIN) ;

T=0; X=1; v=0; D= .01;

P=.1~-D;

PUT PAGE LIST (' HARMONIC OSCILLATOR ');

PUT SKIP DATA (D, X, V) ; '

PUT SKIP;

PUT SKIP LIST ('TIME POSITION') ;

PUT SKIP LIST ( (20) -t );

CALCULATE: X = X + V*D; V =V - X*D; T = T + D;

IF T<=P THEN GO TO CALCULATE;
P=P+ .1;

' PUT EDIT (T, X) (SKIP, F(5,2), X(5), F(10,6) )

IF T<3 THEN GO TO CALCULATE;

END OSCILLATOR;

Execution by a computer produced the results shown on the following
page, which are rounded by the EDIT command before printing.

Exercise 8: Go through the calculation by hand far

enough to convince yourself that output
will only be printed when T=.1, .2,

.3, etc. (Note that the branch back to
the beginning of the computational loop
CALCULATE occurs when T is less than,
or equal to, P.)
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HARMONIC OSCILLATOR

D= 9.99999E-03 X= 1.00000E+00 V= 0.00000E+00;
TIME POSITION
0.10 0.995503
0.20 0.981059
0.30 0.956813
0.40 0.923007
0.50 0.879978
0.60 0.828157
0.70 0.768061
0.80 0.700290
0.90 0.625523
1.00 0.544506
1.10 0.458048
1.20 0.367013
1.30 0.272312
1.40 0.174889
1.50 0.075719
1.60 -0.024207
1.70 -0.123891
1,80 -0,222337
1.90 -0.318562
2,00 -0.4115603
2.10 -0.500532
2,20 -0.584460
2.30 -0.662548
2.40 -0.734016
2,50 -0.798149 :
2.60 -0.854308 |
2,70 -0.901931 3
2,80 -0.940541 :
2.90 -0.969754 :
3.00 -6.989278
3.10 -0.998917
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What about other force laws? So far we have a program only
for the harmonic oscillator force, but it is not difficult to see
where the dependence on force enters the calculation. We used the
harmonic oscillator force to replace the acceleration in the ex-
pression for computing the new velocity. By simply changing this
one line, we can use the same program to compute the motion for a

different one-dimensional force.

We would also like to change the initial conditions, because
different initial conditions might lead to very different motions.
Sometimes additional statements will also be needed for specifying
other constants, particularly when we want to explore a family of

forces with different constants.

This is illustrated in the more realistic case of the damped
oscillator. If you generate the harmonic oscillator soluticn for
large values of time by testing against a larger time in the second
IF statement, you will find that, according to the calculation, the
oscillator always reaches the upper and lower iimits, plus 1 and mi-
nus 1, during its cycle. But an actual mass on the end of a spring
will eventually go less and less far, finally coming to rest in the
equilibrium position. This is due to the frictional force of the
air against the mass, which has been ignored in the computations so

far. To a good approximation, this force is proportional to the

velocity, but always has the opposite sign because frictional forces

always oppose the motion. Thus, the total force for such a system

would be the sum of the Hooke's Law force and the frictional damping

force: ‘
F = =-K*X - B*V (8)

where B, the damping constant, is a positive quantity.

It is not difficult to meodify our program to solve for the mo-
tion of the damped oscillator by changing the velocity calculation.
With an argument similar to that used before (see Exercise 5) we
can eliminate K and M by a change of units; if we replace B Dby
C to indicate this change, the velocity equation becomes V =
V - (X + C*V)*D, and the program for the damped oscillator takes the

form shcwn on the following page.

The expression for the new force has been used to calculate the
velocity.and the additional line in the program defines the damping
constant C = .5. It might be interesting to run this problem with
many choices of damping constant, so that one can get a physical
picture of how damping effects the motion. This may be done by in-
serting a different value of C before each run.

It should be apparent that the computer can be a powerful tool
for solving problems in mechanics. Generalizations of many kinds
are possible. We have used two force laws; it is not difficult to
envision further extensions in that direction. Furthermore, the ex-

tension of these methods to two- and three-dimensional problems is

e
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OSCILLATOR:

CALCULATE: X =X+ V*D; V=V - (X + C*V )*D; T =T + D;

END OSCILLATOR;
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PROCEDURE OPTIONS (MAIN):;

T=0; X=1; V=20; D= .01;
P=.1-D;

C = .5;

PUT PAGE LIST (' DAMPED OSCILLATOR ');
PUT SKIP DATA (C, D, X, V);

PUT SKIP;

PUT SKIP LIST ('TIME POSITION') ;
PUT SKIP LIST ( (20) '=' );

IF T<=P THEN GO TO CALCULATE;
P=P + .1;

PUT EDIT (T, X) (SKIP, F(5,2), X(5), F(10,6) );
IF T<3 THEN GO TO CALCULATE;
®
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straightforward. Because two coordinates are necessary for the spe- |
cification of position and velocity, the solution of two-dimensional
problems will require two equations, rather than the one equation
used here. Details about such developments can be obtained in the
references at the end of this material.

Thus, we have on hand, the rudiments of a tool which will en-
able us to find out how any particle moves, and with the assistance
of this tool, we have gone far toward understanding how dynamical
systems behave. However, we should not let the computer obscure the
importance of the mathematics. The kinds of equations that we are
solving by our basic numerical procedures are ones which are not
simply ordinary algebraic equations. We can see this if we go back
and write the two equations that we already have as definitions of
velocity and acceleration, using the derivative notation: V = dX/d4T
and A = dV/dT. These were the general equations. If we replace A
by its value for a Hooke's Law force, now keeping the M and K,
these two equations become

dXx
3T = \V/ (9a)
v _ K

These equations contain derivatives, so they are called differential |
equations. What we have seen is one way of solving differential
equations a way particularly suitable for use with computers, as it
requires the manipulation of many numbers.

If you proceed further in your study of physics, mathematics
or other sciences, you will find that the differential equation,
handled often by methods quite different from those used here, is
one of the most powerful mathematical tools of modern science.
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ADDITIONAL PROBLEMS

The following problems go beyond the material you have had
here, suggesting further directions for the student who wishes to
continue to use these techniques.

Problem 1:

Recall that the position calculation is based on knowing the
velocity and that the velocity calculation is based on knowing
the acceleration. You may have wondered why we stopped at' the
velocity calculation in our computer program. Why didn't we com-
pute the acceleration based on knowing another quantity?

a) Write such an expression, calling the new quantity Q.

b) Suppose Q is known as a function of X. To be specific,
let Q = -X3, Write a computer program to calculate X at suc-
cessive times. What variables must be assigned initial values to
start the calculation?

c) Show that in the limit of small time intervals Q = %% ’

the rate of change of acceleration.

This problem may suggest that the mechanical method developed
here can be generalized to solve more complicated differential
equations. We stopped with the calculation of velocity because
Newtonian mechanics assumes that it is sufficient to know the ac-
celeration of a body in order to be able to predict its motion.

Problem 2:

Let us add a third force to the damped harmonic oscillator
problem, independent of the Hooke's Law force and the frictional
damping force. It is a function of time only and varies sinusoid-
ally. The net force on the particle becomes

F = =KX = BV + G sin (HT)
a) Show that the change in velocity can be represented by
AV = (=(K/M)X -(B/M)V + (G/M)sin(HT))D

and that, for a particular change in the time unit, this equation

becones
AV' = (=X = CV' + F sin(ET'))D'

Find the relations between the "new" variables V' and T' and the
"0ld" wvariables V and T. Find the relations between the "new"
constants C, F, E, and D' and the "old" constants M, K, B, G,
H, and D.

24
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b) Modify the "DAMPED HARMONIC OSCILLATOR" program so that
it will describe the motion of an object acted on by these three
forces. How many values must you specify in the beginning of your
program? Explore the nature of the motion of the object for sev-
eral choices of the initial values.

Problem 3:

In order to limit the printing of output for the harmonic
oscillator program we defined a variable P and set it equal to
.1-D. We printed values of T and X only when T exceeded P
and then we incremented P by .l.

a) Show that logically we could accomplish the same purpose
if we originally set P = .1 and printed values of T and X
when T was either equal to P or exceeded P.

In the same way that one-third is a repeating decimal frac-
tion, one-hundredth is a repeating fraction in the binary number
system used by most computers. Obviously, a repeating fraction
cannot be represented exactly if one is restricted to a finite num-
ber of significant figures. Thus when we write .0l the computer
usually approximates the number by truncating the infinite binary
fraction beyond some position characteristic of each particular
computer. If this happens, the number in the computer is slightly
less than .0l. How will this situation affect the results of the
lggécallx equivalent procedures described above?

Problem 4:

Suppose that a particle is attracted to a fixed point by a
Hooke's Law force, and that it is now free to move in a plane con-
taining this point. 1Its position can be specified by coordinates
along two perpendicular axes. Call these position coordinates Xl
and X2, and call the corresponding components of the velocity and
acceleration V1 and V2 and Al and A2. Each pair of compon-
ents can be thought of as a two-dimensional vector.

a) Set up algebraic equations analogous to Equations (1) and
(2) for calculating the components of the new position vector (i.e.,
X1 and X2) from a knowledge of the velocity vector and the com-
ponents of the new velocity vector from the acceleration vector.

b) The force must now also be treated as a vector with two
components. Write equations for the two components F1 and F2,
of the Hooke's Law force in terms of X1 and X2.

c) Make changes in the "HARMONIC OSCILLATOR" program so that
it will compute the motion in this two-dimensional problem.
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d) Investigate the effect of various choices of initial
values.

Problem 5:

Another interesting problem is the motion of a planet about
the sun. The force of gravity is always directed toward the sun
and its magnitude is inversely proportional to the square of the
separation distance. It can be shown that the motion always lies
in a plane; thus we have another two-dimensional problem.

a) Write equations for the two components of the force on the
planet in terms of its position components, X1 and X2. (Check
to make certain that your equations satisfy the above conditions.)

b) Make changes in the program of Problem 4(c) so that it will

solve the gravitational problem.

Problem 6:

You have probably already encountered the definitions of work
and energy in your course. The work done by a force, in a one-
dimensional problem, is just the product of the force and the dis-
tance through which the body moves. If the force varies during
the motion, the total work done may be calculated by subdividing
the motion into steps sufficiently small that the force does not
change much during a step. Then the work done in a given step can
be calculated by multiplying the current value of the force (=K*X
in the harmonic oscillator problem) by the distance moved during
that step (V*D). The result should be added to the work accumula-
ted up to the beginning of the new step. '

a) Write an expression for the work done by the Hooke's Law
force in the harmonic oscillator problem. Perform the same trans-
formation of coordinates which was discussed in DAY TWC and used
in Problem 2. You should find that you cannot eliminate both K
and M from the expression for the work; in fact, you should find
a multiplicative factor of K remaining. Divide by K to obtain
what could be called "the work per unit K".

b) Insert into the "HARMONIC OSCILLATOR" program the steps
needed for the calculations of the work per unit K and to print
it each time T and X are printed.

c¢) If you run this program, try to discover the relationship
between W and X. (Hint: compare W with various powers of X,
or look at logarithms of W and X.)
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Problem 7:

The kinetic energy of a particle is defined to be equal to
L, Mv2, By the same change of units described earlier we may set
M= 1 and represent the scaled kinetic energy by ¥ V2,

a) Alter the program of Problem 6 so that it prints .the value
of the kinetic energy each time T, X, and W are printed.

b) If you run this program, compare the work done by the force
with the kinetic energy of the particle. You should try to relate
your results to the corresponding discussion in your textbook.

* % % %

We would appreciate any comments that you might have for im-
proving this material. Such comments should be sent to the authors,

at their home institutions, or directed to the:

Commission on College Physics
Department of Physics & Astronomy
University of Maryland

4321 Hartwick Road

College Park, Maryland 20740




TEACHER'S GUIDE

INTRODUCTORY COMPUTER-BASED MECHANICS

A One Week Sample Course




INTRODUCTION

"Introductory Computer-Based Mechanics" is designed to be
used in any introductory physics course either for majors or
non-majors. This guide will suggest various ways to use the
material with students; other possibilities will occur to you.
In order to be as specific and detailed as possible, we have
designed these notes and the student material with a particular
course organization in mind: we assume that three lectures
(more precisely, three reading assignments) and one laboratory
period will be available. Whether you discuss this material in
lectures will depend upon the background of your students and
your general teaching strategy. For best results your students
should have the use of a time-sharing system; a batch process-
ing system with short turnaround time (5 to 20 minutes) is also
effective. Batch processing with longer turnaround time will
pose the most problems to you and your students. The materials
herein could be used without any computer if necessary, and
this might be advisable if your local computer has a long turn-
around time. You will have to decide when to insert this ma-
terial into your course, but in most instances it will probably
fit best during or immediately after the study of dynamics.

The students should be familiar with velocity and acceler-
ation and with Newton's Second Law of motion. Since the basic
system studied is the harmonic oscillator, some familiarity
with the Hooke's Law force will be desirable, although thorough
understanding of oscillatory motion is in no way prerequisite.
No previous exposure to the ideas of calculus is necessary al-
though some understanding of simple differentiation will allow
some interesting extensions of this work.

The first two lectures, Day One and Day Two, are indepen-
dent of any computer or programming language. Day Three is
available in any one of four common programming languages:
PL/1, JOSS, BASIC, and FORTRAN. If your school has BASIC or
JOSS available, it is likely that you will be working through
teletype terminals on a time sharing system. However, most
FORTRAN and PL/l1 systems currently in use in colleges and uni-
versities are batch processing systems. A later section of the
Teacher's Guide discusses these details further.

Our aim is to teach as much mechanics as possible to stu-

dents who have no knowledge of calculus and differential equa-
tions. In particular we would like to expose them to important
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material which is generally omitted from elementary classical
mechanics, because the students lack analytic or computational
capability (note the distinction-~the aim of this paper is to
show how the latter can be used in place of, or complementary
to, the former). We have found it very difficult to introduce
differential equations into the initial mechanics course without
using numerical and/or computer techniques. In fact, we aver
that this material simply cannot be taught to most students
using the conventional approach. Yet the rewards of early and
gainful use of differential equations in the study of mechanics
are so great that we feel warranted in introducing the computer
at this stage in the conviction that it will make a viable c¢on-
tribution to the teaching of physics.

It is our intent to complement rather than supplant the
use of analytic methods in physics. Undoubtedly fundamental
physics will still be heavily dependent on analytic procedures,
and even applied physics will best be done by a combination of
analytic and numerical methods. Both approaches will be needed
and increasingly more problems may be resolvable only by a com-
bination of them, to be thought of as complementary methods for
the solution of physical problems. For the future scientist, as
well as for students in other areas, direct contact with compu-
ters in the context of his studies is very valuable, and we feel
that this should begin at the earliest possible moment in his
education. If computers are to be used widely, students must
grow up with a sophisticated attitude toward them.

We wish to stress that a numerical method, far from being a
gimmick, is as respectable an approach to a problem as an an-
alytic method. A procedure, an algorithm, is a solution to a
physical problem, just as an analytic method is a solution to
the problem; it simply uses different techniques. From the re-
search point of view, no scientist can afford to neglect any
available technique, and those used here are of major importance
today.

There is yet another strong reason for using computers
within physics courses. Most students find computers exciting,
particularly when they themselves are actively involved in con-
structing and running programs. This pedagogical incentive can-
not be ignored, especially during a time of declining physics
enrollments.

We do not expect the teacher to instruct the student in the
computer language in which his programs are written. The
languages, as used here, are quite straightforward; the entire
thrust of this treatment is to demonstrate that the details of
the language are subordinate to the physical problem and will be
learned in the process of solving it.
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OUTLINE OF STUDENT MATERIAL

The student material is intended to be self-contained and
should provide the student with all the information he will need.
The following outline of the three days' work may be useful to
the teacher.

Day One - Outline

Motion at constant velocity--~brief discussion.
Review of relation for finding new position.

Xnew = Xold + V*D (la)
Numerical example.

Recursive use of this relation for step-by-step iteration calcu-
lation of X,., , V constant.

Numerical integration, for the case of non-uniform velocity.
Exercise l: Check values of position.
Numerical integration of acceleration to obtain velocities.

A/

new

= Vyq + AD (1b)

ol

Beginning with a table of acceleration vs. time, combine the
above equations to compute velocity and position as a func-
tion of time.

Exercise 2: Perform the indicated computations.

The concept of limit and taking derivatives.

Day Two - Outline

Brief review of Day One.

Discussion of interval size, D. Velocity and acceleration may be
changing during the interval. Heuristic argument for reduc-
ing error by reducing D.

(Opticnal: Discuss possible ways to improve the situation.

1) Feynman's trick of the initial half-step calculation of
velocity. (See Feynman or Bork in reference.)

2) Average velocities.
3) More accurate approximations to derivatives.)
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Exercise 3: Re~do Exercies 1, using V at the end of each
interval in Equation (la).

Translation of recursive relations for X and V (Equations
(la) and (1b)) into computer language; discussion of meaning
of the resultant (2a) and (2b) in terms of calculation and
storage of values of X, V.

Xnew = XQ‘[d + VD becones X =X + V*D (28.)
Vaew = Voiga + A*D becomes V =V + A*D (2b)
Calculation of elapsed time: T =T + D (3)

Newton's Second Law of motion gives us acceleration:

=]

= M°A (4&)
= F/M (4b)

>

Example: Hooke's Law force (simple harmonic oscillator)
F = =K*X (5)
Harmonic oscillator version of Equation (2b) using Equation (4a):
V =V - (K/M)*X*D (6a)
Exercise 4: Find dimensions of K, K/M.

ExXercise S5: Eliminate mass and spring constant, K, by proper
choice of units.

Exercise 6: Effect of increase in K on the motion.

Flow chart presentation of computation of harmonic oscillator
motion, using dimensionless Equations (2a), (3), and (6b).

V =V = X*D (6b)

Exercise 7: Hand calculation for harmonic oscillator.

Day Three - Outline
(Computer language dependent--four versions.)

Brief review of Day Two.

Full computer program for the harmonic oscillator. (No print
control as yet.) D and initial conditions fixed in the pro-
gram.

Line-by-line explanation of what is happening in the program ' 3
flow chart.
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Ccmputer language details introduced and explained as needed.
Expanded program with print control.
(Optional: Half-step calculation.)

Exercise 8: Verify that program only prints results in time
intervals of one-~tenth seconds.

Changing the time-step.
What about other forces?

Damped ocillator--complete program, allowing damping constant
and initial conditions to be altered.

Discussion of differential equations of oscillator; generaliza-
tion to two- and three-dimensional problems.

(Optional: Pursue one or more such problems.)

(Optional: Class speculation, based on knowledge of computer
solution, as to the analytic solution. Verfication, if
possible.)

Brief discussion of laboratory session.




LABORATORY SESSION

No student notes are provided for the laboratory material,
because these will vary according to local conditions. It is
assumed the instructor or a capable assistant will be present
during the laboratcry sessions.

In the laboratory the student is to run the harmonic oscil-
lator and the damped oscillator programs, with differing values
of the parameters C, D. initial X and/or initial V, and to
write a lab report based on the results. In particular, the
harmonic oscillator program should be run for various choices of
the time step D. Since the student notes give no method for
determining error, only "trial-and-error" techniques can be
applied. It should prove interesting to note that for the first
order numerical approximations used here (see Equations (la) and
(1b)), the errors in X and V are proportional to D2, until
"roundoff" errors begin to accumulate for very small D. (It is
unwise to let students waste computer time by taking D too
small; place an appropriate limit on the size of D beforehand,
for example, D > 10-%.)

When the harmonic oscillator program is run for many dif-
ferent time steps, and the results are compared with the exact
solution, the cosine function, one discovers that there is an
optimal value of the time step (dependent on the computer and
other factors) which minimizes the error in the computation.
This discovery may come as a surprise to the student, because
the discussion in the text stresses only that the time step must
be sufficiently small for the approximation to be useful. If
the only error involved were the "truncation" error of the ap-
proximation of the differential equation by a difference equa-
tion, smaller time steps would always yield better answers.
However, there is another source of error in all computational
work, whether done by computer or by hand. Only a certain num-
ber of significant figures can be stored in a computer or car-
ried along in a practical hand computation. The part of the
number that is thrown away in each calculation leads to roundoff
errors which accumulate with the number of calculations. Making
the time step smaller and smaller increases the number of calcu-
lations needed to arrive at the final value of the time. Even-
tually, for sufficiently small time steps, roundoff becomes the
major source of errors.

Many computer systems use both standard and extended pre-
cision; that is, the user can choose the number of significant
figures to be retained in each computation. If you have this
choice with your system, the student can get a better view of
the interaction of the two kinds of errors discussed above by
also using extended precision. The roundoff error of a single
arithmetic operation is roughly on the order of one-half in the
last significant digit.
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The student should be assigned the problem of determining
how the results and errors depend on the choice of the time step.
His lab report should contain this analysis.

In running the demped oscillator problem on the computer,
the student should be directed toward the following physical
problem: how does the choice of danmping constant affect the mo-
tion? The student should be able to discern, by himself, two
types of motion, underdamped and overdamped; and he should be
able to determine the range of values of the damping constant C
for each type. The student may also be able to discover how the
choice of the damping constant interacts with other aspects of
the motion, such as the frequency.

How much freedom the student can be allowed in running the
program for different values of the damping constant may depend
on the computer facilities available. Ideally one would like
the student to run enough cases to enable him to understand the
effects of damping on the oscillatory motion. However, if com-
puter time is dear or scarce the teacher may have to indicate
the range of values to use for C in order to display all the
significant physical effects. 1In our case a range of 0 < C < 3
is appropriate.

If the students have written any further programs, follow-
ing the suggestions in the notes, these should be run during the
laboratory session.

Language Variation

Although the programs are given in four languages, FORTRAN,
PL/1, JOSS and BASIC, language implementations are not complete-
ly computer-independent, and each system generally has its own
quirks, so that minor adjustments may be necessary in these pro-
grams. This variation is particularly noticeable with FORTRAN.
If you are not familiar with the operation of your local system,
you should ask someone in your computation center to look over
the programs before you attempt to run them.

Mechanism of the Laboratory Session - Batch Processing

Many university computing centers, particularly those in
small schools and those oriented strongly toward research uses,
will have only batch processing computer systems, where Jjobs are
entered (usually from punched cards) at a central computer fa-
cility. The details vary considerably. If your computer is a
small computer it will probably be possible, and desirable, to
bring the students into the computer room for the laboratory
session, particularly if key punches, etc., are available nearby
and the students can work directly with the operator in submit-
ting programs to the computer. If you can reserve the computer
room for this period, so that no other jobs are running, this
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»

student-computer exchange becomes a very interactive one, gener-
ating much excitement on the part of the students. Whather you
can negotiate such an arrangement will depend on your individual
computer center. It has been done!

With larger batch processing computers the chances are
slight that you will be able to take the students into the com-
puter roo.n for long periods of time, although with a very coop-
erative computer center director this may still be manageable.
In such a center there will be a place to put in programs and a
place for output. The details of how the laboratory can be
conducted will depend heavily on “ie turnaround time, the time
between submission and return of programs. This time can vary
anywhere from a few minutes to days.

If your school has a fast batch system or a fast remote job
entry system the turnaround time may only be a few minutes, and
students can conveniently work in a room near the input-output
point. Using keypunches the student can modify and resubmit pro-
grams immediately on the basis of the output received. If, on
the other hand, the turnaround time is longer than the laboratory
period, students will be unable to make modifications during the
lab period. Under these circumstances the "labcratory session"
could be spread over a couple of weeks, perhaps using the first
twenty minutes of subsequent conventional laboratcries to enable
the student to retrieve the programs he submitted previously and
to make necessary changes and resubmit them before beginning the
regular laboratory session. This scheme is somewhat more clumsy
than the others discussed here, but is still viable.

Another possibility would be for the student to start the
work in the laboratory, and then to submit programs as needed;
homework could be reduced during the period to give time for this
work.

Mechanisms of the Laboratorzggession - Time Shared System

The laboratory session will be run quite differently if your
school has a teletype terminal system, or has access to someone
else's time sharing system. Here again there are several possi-
bilities. First, many terminals may be available, perhaps in a
common room. This room then can hopefully be reserved for the
laboratory time. Students can work at the terminals either in-
dividually or in small groups. Opinions differ as to which is
better. When he works individually, the student is actively
involved. On the other hand, student interaction in small groups
can be a valuable teaching device. It is not convenient for more
than three or four students to use one terminal. Under these
group circumstances you should try to see that everyone gets to
use the system.

If only a single terminal is available the situation kecomes
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similar to batch processing. A teletype terminal which punches
and reads paper tape can be used off-line (not connected to the
computer) to punch the program. Then students can run their
programs at the terminal from the paper tape. If each student
must type in on-line to the computer, it may be necessary to
split the lab as suggested above.

Ona advantage of the terminal, even a single terminal, is
that one usually has an on-line editing system for correcting
program errors. This would be particularly useful if any stu-
dent-written programs are run. The details differ from one
system to another.

If you are not a user of the computer system, it might be
desirable to have someone familiar with it on hand during the
laboratory session. Perhaps one of your departmental members
would be able to offer such assistance.

Connections with Other Laboratory Work

ﬂ s$tudents can be prepared for the numerical analysis of the
harmonic oscillator by first taking measurements of a mass on a
epring in &n earlier laboratory, and then comparing the data
with the results of our analysis. One of several ways in which
this can be done is as follows: a small blinky (relaxation
oseillator), flashing at about 30 or 40 times a second, is hung
oh & spring. A Polaroid camera photographs this system. As
ihe blink goes from the lowest to the highest point; it is pho-
tegraphed using « “olaroid camera with the shutter open. The
fesull is a series of dots on the film, recording the position
of the blinky at equal time intervals. Stroboscopic lights
will produce similar resulte., Then the Polaroid film can be
weed a5 & slide by making small pin holes at each dot and pro-
Jeéilhg the picture onto graeph paper. The student can then ob-
1aih faifly reliable X-T data and can plot these exparimental
#ifte @h o XT graph.

Afvef the harmonic oscillator problem is run on the compu-

‘e, the eapefidehtal points can be compared with those obtained

4-} emasufeodshl, Whéeh the measure] and calculated points are
plotied Sogeiner, with proper sca’ing, the results are impres-

adve.

siianies Goah be ebtained from Holt, Rinehart and Winston,
tame (nduelfies, ohd Baling Corporation; or can be constructed
teroiiy.
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FURTHER WORK AND ADDITIONAL MATERIAL

Further Extensions

For students who may want to go further, there are some
obvious extensions. First, students can be encouraged to study
other one-dimensional force laws. Furthermore, there are many
interesting two-dimensional problems. Treatments exist in the
literature for the one-particle gravitational problem, both
analytically and as a computer problem. Interesting insight can
be gained by students in finding when open and closed orbits
occur. Feynman considers only a closed orbit case. A student
running on the computer with different initial conditions may
discover that the orbits are not always closed. This discovery
can be effective pedagogically. But how does one distinguish
between the open and closed orbits? The program can be construc-
ted so as to lead the student toward the answer; it can print
the total energy for each set of initial conditions. Students
can relate open and closed orbits, and positive and negative
values of the energy. Energy considerations can also be raised
in other problems; with the oscillator, energy conservation can
be shown dynamically.

Other two-dimensional problems are possible; for example,
a particle moving in a constant magnetic field. The numerical
solutions may, by displaying symmetries or recognizable mathemat-
ical properties, suggest how to approach the analytic solution
of the differential equations, particularly if the student has
some familiarity with the differentiation of sine and cosine
functions.

These extensions of the present material are concerned with
mechanics. Similar tactics can be used in other areas of begin-
ning or intermediate physics courses. Generally, any area in
which ordinary differential equations are important is a candi-
date for effective use of the computer, particularly in cases
where the student does not have the analytic ability to handle
differential equations. Thus, Sherwin (see References) discusses
quantum mechanics numerically. He does not directly refer to
computers, but several of us have had satisfactory experience us-
ing computers with the type of agpproach he outlines. Although
most students at this stage do not have the analytical abilities
required to handle differential equations, the basic ideas can
be mastered by even relatively unsophisticated students. What
is needed is the capability to play with solutions of the
Schrbdinger equation, capability available through computers.
(For an example, see A. Luehrmann, The Square Well in Quantum
Mechanics, Am. J. Phys. 35, 275 (1967).)

Other Materials

You may find computer-produced filims useful in connection
with this material. The most widely available is Frank Sinden's

38
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lé6mm film, "Force, Mass, and Motion", available on loan through
Bell Laboratories, Education Development Center, and commercial
sources. It deals with mechanics, mostly two-body mechanics,
including the effects of the inverse square force and others.
Motions are shown on the screen, with the moving particles trac-
ing their paths in an effective and convincing fashion. Students
can relate the techniques involved in producing the film to those
that they have been seeing. (Running time: 15 minutes.)

The 8mm computer-animated film loops (in cartridges) pro-
duced by Harvard's Project Physics and available from the Ealing
Corporatlon, are useful. "Program Orbit I", "Program Orbit II",
"Kepler's Laws", "Central Forces", and "Unusual Orbits" were all
- produced by computer programs 51m11ar to those shown here. The
tie-in between the step-by-step calculations and the geometrical
orbits composed of straight-line segments shown in the film can
be very helpful to visually-oriented students. (Running time:

3 minutes in Technicolor cartridge projector.) The 1l6émm, color
animated film, "Newton's Equal Areas" (produced by Bruce and
Katherine Cornwell), also displays many of these line segment
orbits, explaining how Newton used the two laws of motion to
construct such orbits. Again the relation between geometry and
analysis is significant; several sequences are based on the out-
put of computer programs much like the present ones. The film is
available from International Film Bureau, in Chicago. (Running
time: 8 minutes.)

While it is not strictly relevant to the present approach,
the instructor who wishes to give his class some additional in-
sight into computer usage might consider showing the l6mm Charles
Eames film entitled "The Information Machine", available on loan
from IBM offices. (Running time: 10 minutes.)

Short Films for Physics Teaching, a recent catalog issued by
the Commission on College Physics, includes an appendlx listing
computer-animated films; the Commission's Newsletter is also
listing subsequent productions.

A Project Physics laboratory, described in the Unit 2 Stu-
dent Handbook, directs the student to plot an orbit for the
gravitational problem, using methods like those mentioned in the
above films. Project Physics material is available from Holt,
Rinehart and Winston.

You might find it advantageous to use overhead transparen-
cies of the flow charts and programs in this material. All the
material included is in the public domain and may be reproduced.

The Commission on College Physics operates a consulting ser-
vice which allows phy51cs teachers to request the assistance of
qualified phy51c1s+s in curriculum development projects. Consul-
tants with experience in the use of computers in physics courses
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can be provided, and the school can request such advice.

Feedback from users will be essential to the authors and to
the Commission on College Physics in determining future needs.
We would appreciate receiving from you an informal letter discus-
sing how you used this material, the problems you encountered or
suggestions you may have for improvements.

References

Several references (also listed at the end of the student
material) may be useful to you or your students, particularly
those who wish to explore this approach beyond these notes.

Sawyer's book, What is Calculus About?, contains two chapters
on speed based on a numerical treatment similar to that used here.
This material is elementary, and might be used by weak students
as an introduction to the present notes. These chapters are also
reproduced in the Harvard Project Physics Reader 1.

Possibly the first text to use numerical analysis for teach-
ing physics was Chalmers Sherwin's Basic Concepts of Physics.
The introductory material discusses numerical solutions of the
differential equations of classical mechanics, using methods like
the ones used here. A later chapter indicates how one could use -
this numerical approach in quantum mechanics to get serious quan-
tum mechanics across to beginning students.

In the Feynman Lectures on Physics, Chapter 9 of Volume I is
a treatment of classical mechanics based on numerical methods.
Feynman considers both the harmonic oscillator and the one-body
two-dimensional gravitational problem. He uses a trick, not used
in the present notes, which improves the accuracy of the calcula-
tion to second-order; that is, errors are proportional to D3

He first calculates an initial half-step in the velocity so that
in the calculational loop the velocity calculations are intermed-
iate between the position calculations.

You can have students run the program with and without
Feynman's initial half~-step calculation. To insert the half-step
calculation requires only the addition of a new velocity-calcula-
ting line, before the main calculation. In place of D, D/2 is
used. The improvement made by this simple change is remarkable,
and is likely to be a considerable surprise to the student.

Feynman makes no reference to computers until the last sec-
tion of the chapter, in which he considers the n-body gravita-
tional problem. The Feynman chapter is written in an exciting
way, and would be valuable for most classes. It does, however,
start with the differential equations, so one might have diffi-
culty with it in some courses. The chapter has been reprinted in
fortran for Physics and in the Harvard Project Physics Reader 1.
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In Fortran for Physics (Alfred M. Bork) the Feynman chapter
is reprinted. Programs are presented for both harmonic oscillator
and one-particle gravitational problems, following the methods
used in Feynman. For further study it also contains student prob-
lems, and a more advanced physical problem, that of three gravita-
tionally interacting bodies. The physics and the introduction of
further details of FORTRAN are interspersed.




SOLUTIONS TO THE ADDITIONAL PROBLEMS

Problem 1l:
(a) The equation for the acceleration will be
Anew = Rga + QD
The equivalent computer statement would be
A=A+ Q*D
(b) For Q = -BX3, the expréssion for the acceleration becomes
A = A = B¥*X*X*X*D

The computational loop which is performed for each new time
will then be

X=X+ V*D

V =V + A*D

A = A - B*X*X*X*D
T=T+ D

At the beginning of the computation we would have to specify
values for A, V, X and also for the constant, B. The program,
written in FORTRAN, is shown in Figure 1. It produced the out-
put shown in Table 1.

The most striking feature of the computation is that the
maximum positive and negative values of the position steadily
increase. OQualitatively, this can be explained in the following
way: when X is positive Q is negative and the change in ac-
celeration with time will be negative. Thus, whether the accel-
eration is positive or negative, it will decrease with time and
will eventually become negative. When X is negative Q and
the rate of change of the acceleration are positive. Now the
acceleration will increase and eventually become positive. We
have what might be called a "delayed" restoring force. Due to
the "delay", however, oscillations will build up. Because the
change in all of the variables during the time interval of the

numerical computation becomes very large the computation is prob-

ably not very accurate. The basic behavior, however, is fairly
accurately represented by the output shown in Table 1. Students
might wish to experiment with variations in the value of D in
this problem. An interesting result is that varying D may
change the "amplitude" of the oscillations but has very little
effect on the "period".

42
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PROGRAM QUARTIC (OUTPUT,TAPE6=OUTPUT)

WRITE (6, 30)

X=1.

V=0.

A=0.

B=1.

T=0.

D=.01

P=,1-D
WRITE (6, 40)X,V,A
WRITE(6,50)B
WRITE (6,60)
A=A-B*X*X*X*D
V=V+A*D

X=X+V*D

T=T+D

IF (T-P) 10,10,12
WRITE(6,70)T,X,V,A
pP=P+.1

IF (T-3.)10,10,16
STOP

FORMAT (22H1 THE QUARTIC FORCE)

FORMAT ( 7HO X=,F4.1,4H V=,F4.1,4H A=,F4.1)
FORMAT ( 30H THE COEFFICIENT OF FORCE=,F7.4,//)
FORMAT (9X, 1HT, 11X, 1HX, 11X, 1HV, 11X, 1HA)

FORMAT (F10.2,3F12.4)
END

Figure 1




T
.10
.20
.30
.40
.50
.60
.70
.80
.90

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
; 2.10
2,20
2.30
2.40

; 2.50
| 2.60
| 2.70
2.80
2.90
3.00
3.10

THE QUARTIC FORCE

X

.9998
.9985
.9950
.9885
.9780
.9624
.9409
.9126
.8768
.8326

« 7796

« 7171
.6448
.5623
.4695
.3661
.2522
.1276
-.0076
-01534
-.3098
-04769
-06545
-08424
-1.0402
-102469
-1.4611
-1.6801
-1.8999
-2,.1147
-2.3160

Table 1
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! X= 1.0 V= 0.0 A= 0.0
1 THE COEFFICIENT OF FORCE= 1.0000

\'4
-.0055
-.0210
-.0464
-.0817
-.1266
-01809
-.2441
-03156
-.3947
-.4805
-.5721
-06684
-.7684
-.8711
-.9756

-1.0812
-1.1872
-1.2935
-1.3997
-1.5060
-1.6122
-1.7181
-108228
-109245
-2,0202
-2.1043
-2.1688
-2.,2017
-2.1867
-2,1028
-109240

A
-01000
—01998
-.2989
-03967
-04920
-.5837
-06703
-.7504
-.8227
-08358
-09389
-.9815

-1.0138
-1.0365
-1.0508
-1.0585
-1.0617
-1.0626
-1.0626
-1.0626
-1.0613
-100554
-1.0378
-09969
'09154
-.7690
-.5253
-01443
.4210
1.2201
2.2970
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Problem 2:
(a) The equation for updating the velocity will be
View = Voig + (=(K/M)+X = B/M) -V + (G/M) *sin(H+T)) -D
If we make the substitution
V = (K/M) 2.
and T = (M/K) Y2

into the preceding equation and simplify by eliminating as many
common factors as possible we will have the following eguation:

V', =V'gq + (-X = C.V' + Fesin(E-T')) D'

where F = G/K
¢ = B/ (MK) *2
and E = He (M/K) 7

Finally we can drop the primes from velocities and times
to obtain the folliowing computer expression:

V=V-(X+C* - F*SIN(E*T)) *D
(b) A program, written in FORTRAN, incorporating this addition-
al force is shown in Figure 2. This program's output is shown
in Table 2.

Problem 3:

1f we insert the suggested test for T > P note that a
rounded value of, for example, T = 0.5 is actually slightly less
than 0.5, so that the equality T =P = 0.5 is not satisfied,
and the values of X,V for T = 0.5 will actually not print un-
til the next time through the computational loop when they will
have been calculated.
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PROGRAM FORCE (OUTPUT,TAPE6=0UTPUT)
WRITE(6,30)

X=0.

v=0.

C=1.

F=1.

E=1.

T=0.

D= 001

P=01-D

WRITE(6,40)X,V

WRITE(6,50)C,F,E

WRITE(6,60)

V=V- (X+C*V-F*SIN(E*T)) *D

X=X+V*D

T=T+D

IF (T-P)10,10,12

WRITE(6,70)T,X,V

P=P+.1

IF (T-4o4) 10'10' 16

STOP

FORMAT (39H1 FORCED, DAMPED HARMONIC OSCILLATOR
FORMAT ( 7HO X=,F4.1,4H V=,F4.1)
FORMAT ( 7H Cc=,F6.3,44 F=,F6.3,4H E=,F6.3,//)
FORMAT (9X, 1HT, 11X, 1H{, 11X, 1HV)
FORMAT (F10.2,2F12.4)

END

Figuie 2

E
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X= 0.0 v= 0.0
c= 1.000 F= 1.000 E= 1.000

.10

.20

.30

.40

.50

.60

.70

. 80

.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
4.00
4.10
4.20
4,30
4,40
4,50

X
.0002
.0013
.0042
.0096
.0181
.0302
.0463
.0665
.0910
.1198
.1528
.1896
.2390
.2735
.3197
.3679
.4176
.4680
.5183
.5680
.6161
.6620
.7049
. 7441
.7788
.8085
.8326
. 8504
.8617
. 8659
.8627
.8520
. 8337
.8076
.7738
« 7325
.6839
.6284
.5664
.4982
. 4247
.3462
02637
1777
.0892

\'%
.0044
.0178
.0391
.0672
.1007
.1385
.1792
.2216
.2646
.3069
.3474
.3850
.4189
.4482
.4720
.4897
.5009
.5050
.5017
.4909
.4725
.4466
.4133
«3729
.3258
.2725
.2135
. 1495
.0812
.0094

-.0651
-.1413
-02185
-02956
-03718
-04461
-.5176
“¢5854
“06487
“07068
-,7588
-08041
'08421
“08722
“08942

Table 2
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Problem 4:

If we make the same substitution for velocities and times
which we have made several times previously the computational
equations become

(a) V1l = V1 - X1*D
V2 = V2 - X2*D
X1 = X1 + VI1*D
and X2 = X2 + V2%*D

(b) A program written in FORTRAN, incorporating these changes,
but with print times, P, occurring at intervals of .2, is shown
below in Figure 3. A typical run of this program produces the
output shown in Table 3.

PROGRAM HOOK (OUTPUT, TAPE6=OUTPUT)

Xl=l .

X2=0 .

V1=0,

vV2=l,3

T=0,

D=,01

P= 02""D

WRITE (6,30)

WRITE(6,40)X1,X2,V1,V2

WRITE (6,60)
10 Vi=V1-X1*D

V2aV2=X2*D

X1=X1+V1*D

X2=X24+V2*D

T=T4D

IF (T-P)10,10,12
12 WRITE(6,70)T,Xl,X2

P=Pt,2

IF (T"‘g 0) 10,10,16
16 STOP
30 FORMAT (34H1 HOOKE'S LAW IN TWO DIKENSIONS ) ) .
40 FORMAT (8HO Xl=,76,3,5H X2=,76.3,5H Vi=,F6.3,%0 WV2=,F6,3.4M
60 FORMAT (9X, 1HT, 10X,2HX1,10X,21iX2)
70 ggRMAT(F10;232912e4)

ND

Pigure 3
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Problem 5

{a) It can be seen in Figure 4A that
the Cartesian componants of the force A
are given by

Pl = =F cos0 ; P2 = «F gind

where the magnitude of the gravitation-
t al force ¥ = 1/R? and tan0® = X2/X1.

{b) The program to solve this problem
18 shown in Figure 4B and the output
produced by this program is given in
Table 4. It is interesting to compare
the wooke's lLaw force and the inverse
square forece., Choosing initial condi-
tiohs which do not correspond to circu-
1af Ofbits will shed some light on this
conpet 150N, Pigure 4A

tAM PLANET (OUTPUT, TAPK6=OUTPUT)

”3!9330 3“1 . L
WIT0 16, 4018 82 VI V2 4
*wiTRIE, 800 ;
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MUP= RGO ¥ Y
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INVERSE SQUARE FORCE

xl= 1.000 X2= 0,690 V1= 0.000 V2= 1.000

T
.10
.20
.30
.40
.50
.60
.70
.80
.90

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2,40
2,50
2.60
2.70
2.80
2.90
1.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
1,90
4,00
4,10
4,20
4,10
4,49

4,%0

-

X1l
9945
9791
.9538
«9190
8749
. 8220
.7609
.6920
.6162
.5342
« 4467
« 3547
«2592
«1610
0611

'a0393
-,1394
-,2380
'13342
“i4271
'15156
“05939
“té?ﬁl
“07466
=,8094
=-,8642
‘&9102
=,9471
”§9744
~e9920
‘t99§7
-,9974
=,9851
~'9630
x,9314
*§39§§
“i‘d@?
o 7§20
‘u?l@@
=,65439
=,5646
x44797
‘33992
'0296?
‘t§@@§

X2
.0998
.1987
2955
.3894
4794
5645
.6440
. 7169
.7826
.8404
.8897
.9300
.9609
9820
9932
.9943
9853
.9663
<9375
«8993
.8519
« 7989
«7319
6604
5823
.4984
. 4094
+3163
«2200
1215
0218

-,0781
‘Ql?’g
*t37‘6
=,3692
“*4502
=, 5460
”th?s
=, 7024
“t??ﬁg
153364
=, 3325
“a§2§f
‘a@ﬁgg
‘a@@4§

R
.9996
9991
.9986
.9981
9977
09972
.9968
.9965
.9961
.9958
.9956
.9954
,9952
.9951
.9951
.9951
.9951
.9952
.9953
.9955
,9958
.9960
.9963
9967
.9971
9975
.9980
.9984
9989
9994
9999

1.0004
1,0009
1,0014
1.0018
1.0023
1.0027
1.0031
1.003%
1.0039
1,0042
1.0044
1,004%
1,0048
1,0049

Table 1
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Problem 6:

(a) Work done by a force F in a displacement AX is given
AW = FAX = =KXAX

for a Hooke's Law force. Since time is not present in this
equation the transformation leaves it unaffected. Hence, if
we omit K from the calculation we must remember that we are
computing "work per unit K",

(b) Since AX = V.D the FORTRAN program is that which is
given below in Figure 5, with its output given in Table 5 on
the following page.

PROGRAM WORK (OUTPUT, TAPE6=0UTPUT)

WRITE (6,30)

T=0,

X=]l,

V=0,

W=0.

D=,01

P=,1=D

WRITE(6,40)X,V,D

WRITE(6,60)
10 X=X+V+*D

V=V=X*D

WaW=-X*V*D

T=T4+D

Iir(7=P)10,10,12
12 WRITE(6,70)T,X,V,H

P=P+.1

ir (Q"‘ . 4) 10; 10; 16
16 STOP |
30 FORMAT (36H1 WORK IN SIMPLE HARMONIC MOTION )
70 gg%ﬂHT(FIOaZ;3F12a4)

rigure §
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WORK IN SIMPLE HARMONIC MOTION
X= 1.0 v= 0.0 D= .01

T X v W
.10 09955 ""00998 00055
.20 »9811 -.1987 .0207
.30 .9568 ~.2955 .0451
.40 .9230 -.3894 0777
050 08800 “.4794 11172
.60 .8282 -.5647 .1621
.70 .7681 -.6442 .2105
.80 .7003 -.7174 .2606
.90 «6255 -.7833 .3103

1.10 +4580 -.8912 .4009
1.20 .3670 -.9321 .4382
1030 n2723 ""i9636 .4681
1.50 .0757 -.9975 .5014
1.60 ~-.0242 -.9996 .5035
1.70 -,1239 -.9917 .4956
1.80 -,2223 -.9739 .4781
1.90 ~.3186 -.9463 4517
2.00 -.4116 -.9093 4175
2.10 -,5005 -.,8632 3767
2.20 -,5845 -.8085 .3311
2.30 -,6626 -.7457 «2825
2.40 -.7340 -.6755 2329
2.50 -.7982 -.5985 .1841
2, 70 -.9019 -.4274 0971
2.80 -.9406 -,3350 0623
2.90 -,9698 -,2392 «0353
3.00 ”09393 “oldll a0171
3.10 -,9989 -,0416 .0085
3:26 *-9986 u°584 ¢0099
3.30 -.9883 «1578 0211
3.40 -,9681 «2556 .0418
3.50 -,9382 «3508 0711
3.60 -.8990 14425 «1079
3.70 -.8507 5299 <1507
3.80 =-.7940 «6119 <1979
3.90 -,7294 .6878 «2475
4.00 =.6574 «7568 «2976
4,10 =,5789 <8183 «3462
4,20 =, 4946 «8716 3914
4.30 -,4054 +9162 4314
4.40 -.3121 .9516 L4645
4,50 ~-,2157 9775 4896 Table 5
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Problem 7:

(a) A FORTRAN program to calculate the kinetic energy is shown
in Figure 6 (below) and its output is given in Table 6. The ex-
pected agreement between W and E is fairly good. It can be
improved a great deal by choosing D = .00l.

PROGRAM ENERGY (OUTPUT,TAPE6=0UTPUT)
WRITE(6,30)
T=0,
X=],
V=0,
W=0,
D=,01
Pm, 1-D
WRITE(6,40)X,V,D
WRITE(6,60)
10 X=X+V*D
VuV=X*D
WaW=X*V4D
E‘V*V/za
T=T+D
IF(T-P)10,10,12
12 WRITE(6,70)T,X,V,W,E
P=P+4,1
16 STOP
30 FORMAT (28H1 WORK AND KINETIC ENERGY )
40 FORHAT(BHO X"F40114H V‘,F40114H D',FS:Z)
70 FORMAT(F10.2,4F12.4)
END

Figure 6




55

WORK AND KINETIC ENERGY
¥= 1.0 V= 0.0 D= .01

T X v W E
.10 .9955 -.0998 .0055 .0050
.20 9811 -.1987 .0207 .0197
.30 .9568 -.2955 .0451 .0437
.40 .9230 -.3894 0777 .0758
.50 .8800 -.4794 1172 .1149
.60 .8282 -.5647 1621 .1594
.70 .7681 -.6442 .2105 .2075
.80 .7003 -, 7174 .2606 .2573
.90 6255 -.7833 «3103 .3068
1.00 .5445 -.8415 3577 «3540
1.10 .4580 ~-.,8912 .4009 3971
1.30 2723 -.9636 .4681 4642
1.40 .1749 -.9855 .4895 .4856
; 1.50 +0757 -.9975 5014 4975
] 1.60 -,0242 ~.9996 «5035 4996
i 1.70 -.1239 -.9917 +4956 .4917
| 1.80 -,2223 -.9739 4781 4742
1,90 -,3186 -.9463 <4517 .4478
2.00 -.4116 -.9093 «4175 .4134
2.10 -.5005 -.8632 «3767 « 3726
2.20 -.5845 -,8085 3311 «3268
2,30 -.6626 -.7457 «2825 «2780
2:40 ';7340 “16755 u2329 ;2281
2.50 -,7982 -,5985 «1841 «1791
2.60 -,8543 -.5158 «1383 «1329
2070 '09019 “t4274 00971 00913
2.80 -,9406 -.3350 «0623 0561
2,90 -.,9698 -,2392 «0353 0286
3‘00 “59393 “01411 40171 00100
3.10 -,9989 -.0416 .0085 .0009
3.20 -.,9986 .0584 0099 20017
3.30 -,9883 1578 .0211 0124
3.40 -,9681 2556 .0418 0327
3.50 -.,9382 +3508 0711 0615 |
3.60 -.8990 4425 +1079 0979 ]
3.70 -,8507 «5299 1507 « 1404 !
? 3.80 -.7940 «6119 «1979 «1872 1
% 3.90 -.7294 6878 «+ 2475 2365 i
4.00 -.6574 «+7568 +2976 «2864 i
4,10 -.5789 +8183 « 3462 «3348 ;
4,20 -,4946 +8716 +«3914 +3798 ;
4,30 -,4054 v9162 «4314 +4197 ]
4,40 -,3121 +9516 +4645 4528 |
4,50 =-,2157 9775 +4896 4778 Table 6 |



